WWH.forestrygovamy

JABATAN PERHUTANAN SEMENANJUNG MALAYSIA
(Forestry Department Peninsular Malaysia) Jalan Sultan Salahuddin, 50600 Kuala Lumpur. Tel : 603-2616 4488 Fax : 603-2692 5657 Talian Bebas Tol : 1-800-88-5776

CONTENTS

Title Pages
1.0 Introduction 1
2.0 Objective 3
3.0 Methodology 4
3.1 Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and 4 Intsia spp. (Merbau) distribution in Peninsular Malaysia based on the Fourth National Forest Inventory (NFI-4).
3.2 Assessment on distribution and stocking of dry and wet inland 4 Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and Intsia spp. (Merbau) Training and Implementation
3.3 Training and Implementation 6
3.4 Establishment of ten (10) permanent sample 7 plots (PSPs) of Gonystylus spp.
4.0 Data Collection and Analysis 9
5.0 Stand Content 13
5.1 Stand Content of the 59 Sampling Units 13
5.1.1 Stem per hectare 13
5.1.2 Basal area per hectare 16
5.1.3 Volume per hectare 17
5.2 Stand Content of the Enumeration of 10 PSPs 18
5.2.1 Stems per hectare 18
5.2.2 Basal area per hectare 19
5.2.3 Volume per hectare 20
6.0 Costing 20
7.0 Stem Content Comparison Between 59 Sampling Units and NFI-4 21
8.0 Conclusion 24
9.0 References 25

LIST OF TABLE

No. Of Table	Contents	Page
Table 1	Silvicultural Characteristics and Distribution of Gonystylus spp. (Ramin) in Peninsular Malaysia	7
Table 2	Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and Intsia spp. (Merbau) stoking in NFI-4	9
Table 3	Forest Strata used in NFI-4	16
Table 4	Distribution of 10 Gonystylus spp. (Ramin) Permanent Sample Plots (PSPs) in Peninsular Malaysia	17
Table 5	Number of stem per hectare of Aquilaria spp. by diameter classes	19
Table 6	Number of stem per hectare of Intsia spp. by diameter classes	19
Table 7	Number of stem per hectare of Gonystylus spp. by diameter classes	20
Table 8	Basal Area per hectare of Aquilaria spp. by diameter classes	21
Table 9	Basal Area per hectare of Intsia spp. by diameter classes	21
Table 10	Basal Area per hectare of Gonystylus spp. by diameter classes	21
Table 11	Volume per hectare of Aquilaria spp. by diameter classes	22
Table 12	Volume per hectare of Intsia spp. by diameter classes	23
Table 13	Volume per Hectare of Gonystylus spp. According to diameter classes	23
Table 14	Number of stem per hectare by Diameter classes and Species	24
Table 15	Basal Area per hectare by Diameter Classes and Species	24
Table 16	Volume per hectare by Diameter Classes and Species	25
Table 17	Activity Cost	25
Table 18	Number of stem of Gonystylus spp. in Peninsular Malaysia according to Fourth National Forest Inventory (NFI-4).	26

No. Of Table Contents Page
Table 19 Comparison on percentage content of Gonystylus spp. by 27 diameter classes
Table 20 Number of stem of Aquilaria spp. in Peninsular Malaysia 27 according to Fourth National Forest Inventory (NFI-4).
Table 21 Comparison on percentage content of Aquilaria spp. by 27 diameter classes
Table 22 Number of stem of Intsia spp. in Peninsular Malaysia 28 according to Fourth National Forest Inventory (NFI-4).
Table 23 Comparison on percentage content of Intsia spp. by 28 diameter classes
LIST OF FIGURE
No. Of Table Contents Page
Figure 1 Sampling Unit and Sampling Plot Design Used in the NFI-4 11
Figure $2 \quad$ Permanent Sample Plot Design 13
Figure $3 \quad$ PVC Picket for Sub-Plot $20 \mathrm{~m} \times 20 \mathrm{~m}$ 13
Figure $4 \quad$ PVC Picket for Sub-Plot $10 \mathrm{~m} \times 10 \mathrm{~m}$ 13
APPENDIX
Appendix Contents Page
Appendix 1 List of Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and 30 Intsia spp. (Merbau) sampling units enumerated in the study
Appendix 2 Stand content of 10 PSPs by strata and dbh classes 32

GLOSARY

BA	$:$	Basal Area
cm	$:$	Centimeter
dbh	$:$	Diameter Breast Height
EIA	$:$	Environment Investigations Agency
GPS	$:$	Global Positioning System
m	$:$	Meter
IUCN	$:$	International Union for Conservation of Nature
NFI	$:$	National Forest Inventory
NGO	$:$	Non-Governmental Organization
PSP	$:$	Permanent Sample Plot
PVC	$:$	Polyvinyl chloride
SU	$:$	Sampling Unit

ACKNOWLEDGEMENTS

We wish to thank the Ministry of Natural Resources and Environment, International Tropical Timber Organization (ITTO), Convention on International Trade in Endangered Species (CITES), Forestry Department Peninsular Malaysia (FDPM) and Forest Research Institute Malaysia (FRIM) for their cooperation and support throughout period of the Activity.

We would like to express our deep gratitude to the many individuals and organizations which have rendered invaluable assistance in one way or another to make this Activity a success.

We are also indebted to all the members of Activity Coordination Committee for their invaluable support and guidance throughout the Activity. In addition, we wish to express our appreciation to Hj. Dr. Mohd Yunus bin Zakaria from the Headquarters Forestry Department Peninsular Malaysia for his tireless assistance in finalizing the text for publication.

Muhamad Azmi Ibrahim
Samsu Anuar Nawi
Ihsan Sabri Kamarazaman
Mohd Zarin Ramlan
Forest Management Division
Forestry Department Peninsular Malaysia

Assessment on the distribution of Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and Intsia spp. (Merbau) are important due to widespread concerns about the existing rate in Peninsular Malaysia. Assessment on the distribution of these 3 species through Peninsular Malaysia was conducted using NFI-4 sampling unit and PSPs. The study shows (59 SU) only 2 species namely A. hirta and A. malacensis were found. Total number of stem recorded is 3.955 stem per hectare where 2.800 and 1.156 stem per hectare for A.hirta and A.malaccensis respectively. Both species are concentrated in diameter classes $1.5 \mathrm{~m}<10 \mathrm{~cm}$ and $10<30 \mathrm{~cm}$, comprising 3.642 tree per hectare or 92.08% of the total stem number recorded. In term of Intsia spp., I. bijuga and I. Palembanica were recorded in the enumeration. Total number of stem per hectare for both species is 0.057 , where I. bijuga made up recorded 0.01277 stem per hectare and I. palembanica recorded 0.0339 stem per hectare. Five Gonystylus spp. are recorded in the enumeration namely G. bancanus, G. affinis, G. macrophyllus, G. brunnescens, G. confusus and G. maingayi. Total number of stem per hectare for all species is 19.51 stem per hectare. G. confusus which is a dry inland Gonystylus spp. represents about 48.57% or 9.48 stem per hectare of the all the Gonystylus spp. recorded. As for G. bancanus or wet inland Gonystylus which mainly found in the peat swamp forest recorded 5.94 stem per hectare or 26.3% of all the Gonystylus spp. enumerated.

1.0 INTRODUCTION

1.1 Gonystylus (Ramin) is one of three genera of plants in the Gonystyloidae sub-family of Thymelaeaceae family. At present, the genus Gonystylus consisting of about 30 species of tall trees and some shrubs, is distributed throughout the Malesian area (Indonesia, Malaysia, the Philippines, Papua New Guinea, Singapore and Brunei Darussalam) (Soerianegara \& Lemmens, 1994). The vast majority of species are found on Borneo (27 species), especially in Sarawak. Peninsular Malaysia and Sumatra come second with 7 species each, and the Philippines possess 2 species. There are seven (7) Gonystylus spp. (Ramin) species in Peninsular Malaysia, most of the species occur in the inland dipterocarp forests except Gonystylus bancanus that can be found in peat swamp forest (Whitmore, 1972).
1.2 Six species are currently known to be commercially valuable. These species are G. affinis, G. bancanus, G. forbesii, G. macrophyllus, G. maingayi and G. velutinus. G. bancanus is the most commonly traded of the six species. Of the six species, only G. bancanus is considered as wet inland Gonystylus spp. and the other species are dry inland Gonystylus spp. Reliable information on the growth dynamics of both 'dry' and 'wet' inland Gonystylus spp. is needed in Peninsular Malaysia for better management and conservation of these species. The silviculture characteristics and distribution of Gonysty/us spp. is described in Table 1.
1.3 Aquilaria spp. is a genus of fifteen species of trees in the Thymelaeaceae, native to Southeast Asia. They occur particularly in the rain forests of Indonesia, Thailand, Cambodia, Laos, Vietnam, Malaysia, Northern India, the Philippines, Borneo and New Guinea. The trees grow to $6-20 \mathrm{~m}$ tall. A. hirta, A. beccariana, A. rosrata, A. malaccencis and A. microcarpa are found in Peninsular Malaysia. They produce resin-inpregnated heartwood, called Agarwood, that has fragrant and highly valuable especially A. malaccensis. The wood is highly demanded for medicine, incense and perfume across Asia and Middle East. The 2002 IUCN Red List classified this species as Vulnerable.

Table 1: Silviculture Characteristics and Distribution of Gonystylus spp. in Peninsular Malaysia

| Species | Silvicultural Characteristic
 (Average max. tree height
 and diameter size) | Distribution |
| :--- | :--- | :--- | :--- |
| Gonystylus affinis | Medium size tree up to 33 m
 tall and bole up to 76 cm
 diameter. | Dryland forest and
 undulating area. |
| G. brunnescens | Big size tree up to 36m tall and
 bole up to 95cm diameter. | Dryland forests and low
 lying area. |
| G. confusus | Medium to big size tree up to
 30 m tall and 70cm diameter. | Dryland forest and
 lowland area. |
| G. maingayi | Small to big size tree up to
 40 m tall and 76cm diameter. | Dryland forest and
 foothills of mountains
 up to 600m altitude. |
| G. bancanus | Medium size tree up to 27 m
 tall and bole up to 67 cm
 diameter. (Record shows that
 the tree bole up to 80 cm
 diameter) | Found in Peat swamp
 forest |
| G. velutinus | Medium to large size tree up
 to 35m tall and bole up to
 70 cm diameter. | Sandy soil and clayey
 swampy soil, very low
 altitude. |

1.4 Intsia spp. is a genus of flowering plants in the pea family, Fabaceaentsia. Intsia spp. is a widely distributed genus of about nine species (Verdcourt, 1979). In Malaysia, two species have been recorded - I. bijuga and I. palembanica. Intsia spp. has a number of common names but is most widely known as Merbau in Malaysia. Intsia spp. (Merbau) are small to large trees evergreen or deciduous, up to 42-50 m tall; bole sometimes of poor shape, branchless up to $20-25 \mathrm{~m}$; slight buttress $60-75 \mathrm{~cm}$ to huge buttress up to 2 m ; diameter at breast height up to $160(-250) \mathrm{cm}$, with spreading crown. There are concerns from NGOs such as Environmental Investigation Agency (EIA) that international trade in Intsia spp. exceeds sustainable levels, with evidence of population declines in some range States, and several species included in the IUCN Red List of Threatened Species and the World List of Threatened Trees.
1.5 Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and Intsia spp. (Merbau) are important tree species that are currently being utilized in Malaysia. There are widespread concerns about the rate at which these species are being exploited. This is accelerated by the introduction of mechanization in harvesting, improved transport methods and land-use change from forest to agricultural land to support socio-economic development and the demand of an increasing population. Present concerns also include increasing demand for timber from industries, both local and international and to certain extend the threats from illegal logging. Given these concerns, the challenge is to manage the forest in a sustainable manner. Hence, there is a need to gather more information on the growth of both 'dry' and 'wet', Gonystylus spp. trees that occur in the inland forest areas. As such, more PSPs are needed to be established so as to be able to provide more reliable information on growth and population dynamics of these species in Peninsular Malaysia.

2.0 OBJECTIVES

The aim of the Activity is to contribute significantly in ensuring the stocking and sustainability of Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and Intsia spp. (Merbau) are consistent with the sustainable forest management practices being implemented in Peninsular Malaysia. The specific objectives of this Activity are as follows:
i. To collect information on the distribution, status and stocking of dry and wet inland Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and Intsia spp. (Merbau) based on the Fourth National Forest Inventory (NFI-4) information in Peninsular Malaysia;
ii. To establish ten (10) permanent sample plots (PSPs) to periodically monitor the growth, mortality and ingrowth of Gonystylus spp. (Ramin) in Peninsular Malaysia.

3.0 METHODOLOGY

3.1 Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and Intsia spp. (Merbau) distribution in Peninsular Malaysia based on the Fourth National Forest Inventory (NFI-4).

Study on the content and distribution of Gonystylus spp. was carried out based on the NFI-4 data conducted in 2002. Based on the 1644 sampling units (SU) set up for enumeration in NFI-4, a total of 60 SU units were selected that contained Gonystylus spp. as well as Aquilaria spp. and Intsia spp. The Gonystylus spp. was given priority in the selection of SU follows by Aquilaria spp. and Intsia spp. respectively. Of these 60 SU units, 59 still remain intact while one of the SU units have been seriously disturbed due to forest road construction. The 59 SU units chosen are distributed in the state of Selangor (12 SUs), Negeri Sembilan (6 SUs), Johor (11 SUs), Kedah (7 SUs), Terengganu (7 SUs), Kelantan (1 SUs), Perak (10 SUs), Pahang (4 SUs), and Pulau Pinang (1 SU). The distribution and location of the 59 SUs is shown in Appendix 1.

3.2 Assessment on distribution and stocking of dry and wet inland Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and Intsia spp. (Merbau)

Evaluation on distribution and stocking of dry and wet inland Gonystylus spp., Aquilaria spp. and Intsia spp. was carried out on the 59 SU units selected among the 1644 SU units measured during NFI-4. The species that were enumerated under genus Gonystylus spp. are G. bancanus, G. affinis, G. confusus, G. maingayi, and G. velutinus. As for Aquilaria spp., the species are A. hirta, A. beccariana, A. malaccensis, and A. microcarpa. In addition, two species I. palembanica and I. bijuga of genus Intsia spp. (Merbau) were enumerated. The local name for all the species enumerated is shown in Table 2.

Table 2: Gonystylus spp. (Ramin), Aquilaria spp. (Karas) and Intsia spp. (Merbau) Enumerated in the study

Categories	Species	Local Name
Gonystylus spp.	Gonystylus maingayi	Ramin pipit
	Gonystylus brunnescens	Ramin daun tebal
	Gonystylus confusus	Ramin pinang muda
	Gonystylus affinis	Ramin dara elok
	Gonystylus velutinus	Ramin (name not available)
	Gonystylus bancanus	Ramin melawis
Aquilaria spp.	Aquilaria hirta	Karas baldu
	Aquilaria malaccencis	Karas candan
	Aquilaria beccariana	Karas batu
	Aquilaria rosrata	Karas minyak
	Aquilaria microcarpa	Karas buah
Intsia spp.	Intsia bijuga	Merbau ipil
	Intsia palembanica	Merbau

The enumeration of the 59 SU units were carried out by using similar sampling method as in NFI-4. The design of the sampling unit is shown in Figure 1. The sampling design consists of sample unit of circle shape with one sample plot each in each in every corner, altogether 4 plots. Each sample consists of a 4 meter radius circle plot for enumeration of small size trees (trees 1.5 m height and < 10 cm dbh) and a point sample for big trees (trees $\geq 10 \mathrm{~cm} \mathrm{dbh}$). The measurement of tree diameter at breast height (dbh) was carried out using caliper. Bitterlish Relascope with Basal Area Factor of 4 was used in point sampling method, measuring from the centre of the circle plot. As for the location of the sampling unit, GPS (Garmin 60 CSx) with accuracy of $\pm 6 \mathrm{~m}$ was used by the inventory team.

Figure 1: Sampling Unit and Sampling Plots Design Used in the NFI-4

3.3 Training and Implementation

Before enumeration was carried out, a course was conducted for five days to train the inventory teams on the following topics:-

- Navigation and identification of sample unit location of inventory design with the help of GPS, topographic map and field survey;
- Setting up the sampling unit, assessment and measurement procedure;
- Usage of measuring equipments used in the inventory, such as laser range finder, caliper, GPS and relascope; and
- Identification of the tree species.

Field measurement of the 59 SUs unit was carried out by a contractor inventory team, a inventory team consisting of seven men. On the average 8 to 10 SU units were enumerated per month. The field work was carried out from month June to October 2009.

Field check to control the quality of the field enumeration was carried out by an inventory team from the Forest Management Division, Forestry Department Peninsular Malaysia. Field checking was carried immediately every month to ensure that the enumeration procedure and identification of all the species was correctly conducted.

3.4 Establishment of ten (10) permanent sample plots (PSPs) for Gonystylus spp.

3.4.1 Establishment of ten (10) permanent sample plots (PSPs) to periodically monitor the growth, mortality and ingrowth of Gonystylus spp. in Peninsular Malaysia was carried out in month July to August 2010. The ten (10) PSPs were selected based on the stand content of the 59 SU units that were carried out as described in paragraph 3.3. Selection of the 10 PSPs was based on the following criteria:-

- The number of stem of Gonystylus spp. recorded in each sampling unit. Sampling units with most number of stem are preferred to those with lesser number of stem.
- Out of the ten PSPs, five (5) PSPs were chosen based on the frequent occurrence of dry inland Gonystylus spp. and the other five PSPs of wet inland Gonystylus spp.
- All the strata have the representation of at least one PSP but this requirement must firstly satisfy both the criteria mentioned above.
3.4.2 The design of the PSP is shown in Figure 2. The size of each PSP plot is one (1) hectare with each sub-plot PSPs measured 25 subplots of $20 \mathrm{~m} \times 20 \mathrm{~m}$ and 9 sub-plots of $10 \mathrm{~m} \times 10 \mathrm{~m}$. Gonystylus spp. trees of size $\geq 10 \mathrm{~cm}$ dbh are measured in the $20 \mathrm{~m} \times 20 \mathrm{~m}$ sub-plots, while in the $10 \mathrm{~m} \times 10 \mathrm{~m}$ sub-plots only trees of size $<$ 10 cm dbh as well as trees measuring $\geq 1.5 \mathrm{~m}$ height are measured.

Figure 2 : Permanent Sample Plot Design

3.4.3 Marking PSP

i) Sub-Plot $\mathbf{2 0 m} \times \mathbf{2 0 m}$

PVC picket with a diameter of three (3) centimetres, thickness of two (2) millimetres and a height of 1.5 meters are install at each corner of square ($20 \mathrm{~m} \times 20 \mathrm{~m}$) and painted red on top (as in Figure 3).
ii) Sub-Plot $10 \mathrm{~m} \times 10 \mathrm{~m}$

PVC picket with diameter of two (2) cm, thickness 1.5 mm and a height of 1.5 meters are installed at each corner of the square and painted yellow at the top (as shown in Figure 4).

4.0 DATA COLLECTION AND ANALYSIS

4.1 A total of 59 SUs were chosen based on NFI-4, and enumeration was carried out on these 59 SUs to determine the potential areas or locations of establishing the 10 PSPs. This exercise was undertaken because during NFI-4 many of the species was identified as a "group of species" or to genus level. This is partly because some of the inventory work were contracted out to company that have limited number of experience workers who could not identify trees at the species level. In this regard, in the NFI-4, Gonystylus spp. was identified into two (2) main species namely, G. bancanus and G. maingayi, while for Aquilaria spp. and Intsia spp. they were identified as one species each. On top of that some of the NFI-4 SU established in 2002 are destroyed or damaged due to logging or road construction or forest conversion.
4.2 Data collection in the field was conducted as explained in The Field Manual Fourth National Forest Inventory (NFI-4). The distribution of the 59 SUs by state and strata is shown in Table 3. However two strata covering the stateland (Code 40 and 41) were left out during this exercise because the security of its tenure is uncertain in the future. Besides, most of the forest area on statelands is already earmark for land conversion and development projects.
4.3 Analysis of stem per hectare, basal area per hectare and volume per hectare for the 59 SUs was computed as follow.
i. Number of tree per hectare for each sampled tree for each point (TNP ${ }_{i}$).
$T N P_{i}=\frac{B A F}{B A_{i}}$

BAF - Basal area factor (4).
$B A_{i} \quad-\quad$ Basal area of a sampling tree $\left(m^{2}\right)$.
TNP $_{i} \quad$ - Number of tree per hectare for each sampled tree for each point.
ii. Number of tree per hectare for each defined species and diameter class for each point (TNP).
$\mathrm{TNP}=\sum \mathrm{TNP}_{\mathrm{i}}$

TNP - Number of tree per hectare for each defined species and diameter class for each point.

TNP ${ }_{i} \quad-\quad$ Number of tree per hectare for each sampled tree for each point.
iii. Number of tree per hectare for one sampling unit (TNS ${ }_{i}$).

$$
\mathrm{TNS}_{\mathrm{i}}=\frac{\mathrm{TNP}_{1}+\mathrm{TNP}_{2}+\mathrm{TNP}_{3}+\mathrm{TNP}_{4}}{4}
$$

$\mathrm{TNS}_{\mathrm{i}} \quad-\quad$ Number of tree per hectare of a sampling unit for each defined species and diameter class.
$\mathrm{TNP}_{\mathrm{i}} \quad-\quad$ Number of tree per hectare of Point 1 for each defined species and diameter.
TNP $\quad-\quad$ Number of tree per hectare of Point 2 for each defined species and diameter.
$\mathrm{TNP}_{3} \quad-\quad$ Number of tree per hectare of Point 3 for each defined species and diameter.
$\mathrm{TNP}_{4} \quad-\quad \begin{aligned} & \text { Number of tree per hectare of Point } 4 \text { for each defined } \\ & \text { species and diameter }\end{aligned}$
iv. Number of tree per hectare for 59 sampling units
$\mathrm{TNN}_{\mathrm{i}}=\frac{\sum \mathrm{TNS}_{\mathrm{i}}}{\mathrm{N}_{\mathrm{i}}}$
$\mathrm{TNN}_{\mathrm{i}}$ - Number of tree per hectare for each defined species and diameter class of the defined sampling units (no./ha).
$\mathrm{TNS}_{\mathrm{i}} \quad$ - Number of tree per hectare of a sampling unit for each defined species and diameter class (no./ha).
$\mathrm{N}_{\mathrm{i}} \quad-\quad$ Number of sampling units ($\mathrm{i}=59$).

v. Basal Area Formula

$$
V=\left(\pi * D^{2} * F * L\right) / 40000 \text { or } V=B A \times L \times 0.65
$$

where:

$$
\begin{array}{ll}
\text { V - Volume of individual tree }\left(\mathrm{m}^{3}\right) & \text { F - Form factor (0.65) } \\
\text { D - Diameter breast height }(\mathrm{cm}) & \text { L - Bole length }
\end{array}
$$

Diameter Classes (cm)	Bole Length (m)
$15-29.9$	5
$30-59.9$	10
$60-74.9$	15
≥ 75	20

* For trees of diameter class $10-14.9 \mathrm{~cm}$ also use the bole length 5 m

Table 3: Forest Strata Used in NFI-4

No.	Stratum	Code	Area (Ha)	No. of SU
1	Superior and Good Virgin Forest	11	236,292	5
2	Moderate and Poor Virgin Forest	12	505,825	12
3	Logged-over Forest (1-10 year)	20	520,193	6
4	Logged-over Forest (12-20 year)	21	733,791	3
5	Logged-over Forest (21-30 year)	22	534,549	10
6	Logged-over Forest (>30 year)	23	223,054	8
7	Virgin Peat Swamp Forest	31	84,510	2

No.	Stratum	Code	Area (Ha)	No. of SU
8	Logged-over Peat Swamp Forest	32	123,114	12
9	Stateland Inland Forest	40	390,929	-
10	Stateland Peat Swamp Forest	41	56,056	-
11	Protection Forest	50	$2,321,701$	2
Total			$5,730,014$	59

4.4 Criteria for selection of 10 PSPs is described in paragraph 3.4.1. Establishment of PSPs and data collection on Gonystylus spp. are based on the Panduan Kerja Luar: Penubuhan "Growth Plots" bagi Daerah Hutan Di Semenanjung Malaysia (Field Manual Establishing Growth Plots for Forest District in Peninsular Malaysia). The PSPs are located on same locations as the SU units of NFI-4. Reference point for SU unit (middle of the circular plot 1) was used as the reference point for PSP (the left corner of the PSP). The SU units chosen for the establishment of the 10 PSPs are shown in Table 4. Five PSPs are selected from Logged Peat Swamp Forest (Code 32), two plots from Moderate and Poor Virgin Forest (code 12), and one plot of PSP each for stratum Superior and Good Virgin Forest (code 11), Logged-over Forest (21-30 year) (code 22) and Logged-over Forest (>30 year) (code 23). The data collected from each PSP included tree species, diameter, number of stem and tree height for tree $\geq 45 \mathrm{~cm}$ dbh. Six (6) tree species of Gonystylus spp. enumerated are G. affinis, G. bancanus, G. forbesii, G. macrophyllus, G. maingayi and G. velutinus.

Table 4: Distribution of 10 Gonystylus spp. (Ramin) Permanent Sample Plots (PSP) in Peninsular Malaysia

No.	Refer- ence No.	Stratum NFI-4	RSO (Lati- tudes)	RSO (Longi- tudes)	PRF	Compt.Topo Map	
Perak (2 plots)							
1	A005	11	360000	616000	Gerik	49	3666
2	A111	22	349000	592000	Papulut	9	3565
Terengganu (3 plots)	23	594000	528000	Bukit Bauk	22	4363	
1	T146	12	566000	541000	Jerangau	54	4264
2	T047	12	6080	Gunung Tebu	105	4066	
3	T051	12	508000	608000			
Johor (1 plot)							
1	J210	32	619000	272000	Gunung Arong	-	4455

No.	Refer- ence No.	Stratum NFI-4	RSO (Lati- tudes)	RSO (Longi- tudes)	PRF	Compt.Topo Map			
Selangor (4 plots)									
1	B123	32	369000	395000	Sungai Karang	217	3659		
2	B124	32	370000	391000	Raja Muda Musa	7	3659		
3	B125	32	371000	390000	Raja Muda Musa	22	3659		
4	B141	32	382000	389000	Raja Muda Musa	82	3658		
Negeri sembilan (1 plot)									
1 N015	11\#	466000	280000	Tampin	17	3955			*PRF - Permanent Forest Reserve
:---									

5.0 STAND CONTENT

5.1 Stand content of the 59 Sampling Units

This section presented the stand of content of 59 sampling units.

5.1.1 Stems Per Hectare

i) Aquilaria spp.

Based on the analysis, only 2 spesies namely A. hirta and A. malaccensis are found. No A. beccariana, A. rostrata and A. microcarpa found in the 59 SUs. Total number of stem recorded is 3.955 stem per ha where 2.800 and 1.156 stem per ha for A. hirta and A. malaccensis respectively. Both species are concentrated in diameter classes $1.5 \mathrm{~m}<10 \mathrm{~cm}$ and $10<30 \mathrm{~cm}$, comprising 3.6423 tree per ha or 92.08% of the total stem number recorded. Detail on the number of stem per hectare for each species in each diameter class is shown in Table 5.

Table 5: Number of stem for 59 sampling units per hectare of Aquilaria spp. by diameter classes

Species	Diameter class (cm)					
	$\mathbf{1 . 5} \mathbf{m *}^{*}<\mathbf{1 0}$	$\mathbf{1 0 < 3 0}$	$\mathbf{3 0 < 4 5}$	$\mathbf{4 5 < 6 0}$	$>\mathbf{8 0}$	
A. hirta	0.8426	1.9571	-	-	-	2.7997
A. malaccensis	0.8426		0.2304	0.0826	-	1.1556
A. beccarania	-	-	-	-	-	0.0000
A. rostrata	-	-	-	-	-	0.0000
A. microcarpa	-	-	-	-	-	0.0000
No. of Stems/Ha	1.6852	1.9571	0.2304	0.0826	0.0000	3.9553

* $1.5 \mathrm{~m}-\geq 1.5$ meter height
ii) Intsia spp.

Both species I. bijuga and I. palembanica were recorded in the enumeration. Total number of stem per hectare for both species is 0.057 , where I. bijuga made up recorded 0.01277 stem per ha and I. palembanica recorded 0.0339 stem per ha. Both of the two species are only found in diameter class $\geq 60 \mathrm{~cm}$ dbh. Detail on the number of stem per hectare for each species in each diameter class is shown in Table 6.

Table 6: Number of stem for 59 sampling units per Hectare of Intsia spp. by diameter classes

Species	Diameter class (cm)					Stem/Ha
	$\mathbf{1 . 5} \mathrm{m}^{*}<\mathbf{1 0}$	$\mathbf{1 0 < 3 0}$	$\mathbf{3 0 < 4 5}$	$\mathbf{4 5 < 6 0}$	>60	
I. bijuga	-	-	-	-	0.01277	0.01277
I. palembanica	-	-	-	-	0.03391	0.03391
No. of Stems/Ha	0.00000	0.00000	0.00000	0.00000	0.04668	0.04668

[^0]iii) Gonystylus spp.

Five Gonystylus spp. were recorded in the enumeration namely G. bancanus, G. affinis, G. macrophyllus, G. brunnescens, G. confusus and G. maingayi. Total number of stem per hectare for all species is 19.51 stems per ha. The stem is mainly in the diameter class of $1.5 \mathrm{~m}<10 \mathrm{~cm}$, contributing to about 82.07% of the total stem number or 16.01 stem per hectare. G. confusus which is a dry inland Gonystylus spp. represents about 48.57 \% or 9.48 stems per ha of the all the Gonystylus spp. recorded. As for G. bancanus or wet inland Gonystylus which is mainly found in the peat swamp forest recorded 5.94 stem per hectare or 26.3% of all the Gonystylus spp. enumerated. No G. velutinus is found in the 59 SUs units surveyed. Detail on the number of stem per hectare for each species in each diameter class is shown in Table 7.

Table 7: Number of stem for 59 sampling units per hectare of Gonystylus spp. by diameter classes

Species	Diameter class (cm)					
	$\mathbf{1 . 5} \mathbf{m}^{*}<\mathbf{1 0}$	$\mathbf{1 0}<\mathbf{3 0}$	$\mathbf{3 0}<\mathbf{4 5}$	$\mathbf{4 5}<\mathbf{6 0}$	$>\mathbf{6 0}$	
G. bancanus	4.21322	0.83088	0.77133	0.09768	0.02705	5.94015
G. affinis	0.84264	0.51345	0.16196	-	-	1.51805
G. macrophyllus	-	-	-	-	-	0.00000
G. brunnescens	0.84264	-	-	0.10197	0.20500	1.14962
G. confusus	9.26908	-	0.11670	0.08987	-	9.47565
G. maingayi	0.84264	0.29599	0.28635	-	-	1.42498
G. velutinus	-	-	-	-	-	0.00000
Total	16.01024	1.64031	1.33634	0.28952	0.23205	19.50845

* $1.5 \mathrm{~m}-\geq 1.5$ meter height

5.1.2 Basal Area Per Hectare

The basal area per hectare for Aquilaria spp., Intsia spp. and Gonystylus spp. is $0.051,0.085$ and 0.378 sq meter, respectively. Only tree of dbh size $\geq 10 \mathrm{~cm}$ are computed for basal area. Respectively, basal area for Aquilaria spp., Intsia spp. and Gonystylus spp. is shown in Table 8, 9 and 10.

Table 8: Basal area for 59 sampling units per hectare ($\mathrm{m}^{2} / \mathrm{ha}$) of Aquilaria spp. by diameter classes

Species	Diameter class (cm)				Stem/Ha
	$\mathbf{1 0}<\mathbf{3 0}$	$\mathbf{3 0}<\mathbf{4 5}$	$\mathbf{4 5}<\mathbf{6 0}$	>60	
A. hirta	0.016949	-	-	-	0.016949
A. malaccensis		0.016949	0.016949	-	0.033898
A. beccarania	-	-	-	-	0.000000
A. rostrata	-	-	-	-	0.000000
A. microcarpa	-	-	-	-	0.000000
Total	0.016949	0.016949	0.016949	0.000000	0.050847

Table 9: Basal Area for 59 sampling units per Hectare ($\mathrm{m}^{2} / \mathrm{ha}$) of Intsia spp. by diameter classes

Species	Diameter class (cm)				Stem/Ha
	$\mathbf{1 0}<\mathbf{3 0}$	$\mathbf{3 0}<\mathbf{4 5}$	$\mathbf{4 5}<\mathbf{6 0}$	$>\mathbf{6 0}$	
I. bijuga	-	-	-	0.016949	0.016949
I. palembanica	-	-	-	0.067797	0.067797
Total	0.00000	0.00000	0.00000	0.084746	0.084746

Table 10: Basal area for 59 sampling units per hectare ($\mathrm{m}^{2} / \mathrm{ha}$) of Gonystylus spp. by diameter classes

Species	Diameter class (cm)				Stem/Ha
	$\mathbf{1 0}<\mathbf{3 0}$	$\mathbf{3 0}<\mathbf{4 5}$	$\mathbf{4 5}<\mathbf{6 0}$	$>\mathbf{6 0}$	
G. bancanus	0.033898	0.084746	0.016949	0.004954	0.140547
G. affinis	0.016949	0.016949	-	-	0.033898

Species	Diameter class (cm)				Stem/Ha
	$\mathbf{1 0 < 3 0}$	$\mathbf{3 0}<\mathbf{4 5}$	$\mathbf{4 5}<\mathbf{6 0}$	>60	
G. macrophyllus	-	-	-	-	0.000000
G. brunnescens	-	-	0.016949	0.101695	0.118644
G. confusus	-	0.016949	0.016949	-	0.033898
G. maingayi	0.016949	0.033898	-	-	0.050847
G. velutinus	-	-	-	-	0.000000
Total	0.067797	0.152542	0.050847	0.106649	0.377835

5.1.3 Volume Per Hectare

The volume per hectare calculated for all the species enumerated is shown in Table 11, 12 and 13. The volume per hectare (m^{3}) ha) for Aquilaria spp., Intsia spp. and Gonystylus spp. is 0.042, 2.068 and 1.021 repectively for the 59 SUs units. For Intsia spp. and Gonystylus spp. the volume is mainly contributed by trees of diameter class $\geq 60 \mathrm{~cm}$. However for Aquilaria spp. the volume is mainly in the diameter class of $45<60 \mathrm{~cm}$ and none in the $>60 \mathrm{~cm}$ diameter class.

Table 11: Volume for 59 sampling units per hectare ($\mathrm{m}^{3} / \mathrm{ha}$) of Aquilaria spp. by diameter classes

Species	Diameter class (cm)				Stem/Ha
	$\mathbf{1 0 < 3 0}$	$\mathbf{3 0}<\mathbf{4 5}$	$\mathbf{4 5}<\mathbf{6 0}$	$>\mathbf{6 0}$	
A. hirta	0.00048	-	-	-	0.00048
A. malaccensis		0.00810	0.03390	-	0.04200
A. beccarania	-	-	-	-	0.00000
A. rostrata	-	-	-	-	0.00000
A. microcarpa	-	-	-	-	0.00000
Total	0.00048	0.00810	0.03390	0.00000	0.04248

Table 12: Volume for 59 sampling units per hectare ($\mathrm{m}^{3} / \mathrm{ha}$) of Intsia spp. by diameter classes

Species	Diameter class (cm)				Stem/Ha
	$\mathbf{1 0}<\mathbf{3 0}$	$\mathbf{3 0}<\mathbf{4 5}$	$\mathbf{4 5}<\mathbf{6 0}$	$>\mathbf{6 0}$	
I. bijuga	-	-	-	0.29250	0.29250
I. palembanica	-	-	-	1.77576	1.77576
Total	0.00000	0.00000	0.00000	2.06826	2.06826

Table 13: Volume for 59 sampling units per Hectare ($\mathrm{m}^{3} / \mathrm{ha}$) of Gonystylus spp. by diameter classes

Species	Diameter class (cm)				Stem/Ha
	$\mathbf{1 0 < 3 0}$	$\mathbf{3 0} \boldsymbol{\mathbf { 4 5 }}$	$\mathbf{4 5} \mathbf{6 6 0}$	$>\mathbf{6 0}$	
G. bancanus	0.004822	0.056980	0.019116	0.048301	0.129220
G. affinis	0.011529	0.001818	-	0.048301	0.013347
G. macrophyllus	-	-	-	-	0.000000
G. brunnescens	-	-	0.018311	0.793880	0.812192
G. confusus	-	0.016001	0.020778	-	0.036779
G. maingayi	0.003154	0.026586	-	-	0.029741
G. velutinus	-	-	-	-	0.000000
Total	0.019505	0.101386	0.058206	0.842182	1.021278

5.2 Stand Content of the 10 PSPs

This section presented the stand content of the 10 PSPs and its detail is in Appendix 2.

5.2.1 Stem Per Hectare

Only four out of the six Gonystylus species enumerated are found in the 10 PSPs. Three species are dry inland Gonystylus namely G. maingayi, G. brunnescens and G. confusus and one is wet inland Gonystylus spp. (G.bancanus).

The number of stem per hectare by diameter classes and species is shown in Table 14. G. confusus have the highest number of stem per ha; however, the stem is mainly confined in the lowest diameter class which is $1.5 \mathrm{~m}<10 \mathrm{~cm}$ dbh. As for G. bancanus, which represents the wet inland Gonystylus spp. the number of stem per ha is 1.6 and the overall number of stem per ha for the dry inland Gonystylus spp. is 3.9 stem per ha. The stem content indicated that G. confusus is the most prevailing species and follows by G. brunenscens (1.5 stem per ha). Table 14 shows more than 62% or 1.0 stem per ha of G. bancanus is in the diameter class $\geq 30 \mathrm{~cm}$ which represents the next potential tree crop. Overall content of Gonystylus species enumerated shows that the distribution of stem is very representative of various diameter classes and species for growth study.

Table 14: Number of stem for 10 PSPs per hectare of Gonystylus spp. by diameter classes and species

Species		Diameter class (cm)				Total
	$\mathbf{1 . 5} \mathbf{m *}^{*}<\mathbf{1 0}$	$\mathbf{1 0}<\mathbf{3 0}$	$\mathbf{3 0}<\mathbf{4 5}$	$\mathbf{4 5}<\mathbf{6 0}$	$>\mathbf{6 0}$	
G. maingayi	-	0.1	-	-	-	0.1
G. brunnescens	1.1	-	-	0.1	0.3	1.5
G. confusus	2.2	0.1	-	-	-	2.3
G. bancanus	-	0.6	0.8	0.2	-	1.6
Total	$\mathbf{3 . 3}$	$\mathbf{0 . 8}$	$\mathbf{0 . 8}$	$\mathbf{0 . 3}$	$\mathbf{0 . 3}$	$\mathbf{5 . 5}$

* $1.5 \mathrm{~m}-\geq 1.5$ meter height

5.2.2 Basal Area per Hectare

Table 15: Basal area for 10 PSPs per hectare of Gonystylus spp. by diameter classes and species

Species		Diameter class (cm)				Total
	$\mathbf{1 . 5} \mathbf{m}^{*}<\mathbf{1 0}$	$\mathbf{1 0}<\mathbf{3 0}$	$\mathbf{3 0} \boldsymbol{\mathbf { 4 5 }}$	$\mathbf{4 5}<\mathbf{6 0}$	$>\mathbf{6 0}$	
G. maingayi	-	0.0065	-	-	-	0.0065
G. brunnescens	0.005	-	-	0.0164	0.1689	0.1853
G. confusus	0.0006	0.0037	-	-	-	0.0042
G. bancanus	-	0.0269	0.0843	0.0398	-	0.1516
Total	$\mathbf{0 . 0 0 1 1}$	$\mathbf{0 . 0 3 7 1}$	$\mathbf{0 . 0 8 4 3}$	$\mathbf{0 . 0 5 6 2}$	$\mathbf{0 . 1 6 8 9}$	$\mathbf{0 . 3 4 7 6}$

5.2.3 Volume Per Hectare

The volume per hectare ($\mathrm{m}^{3} / \mathrm{ha}$) by diameter classes and species is shown in Table 16. The volume/ha of stem of diameter $>10 \mathrm{~cm}$ dbh varies from $0.0221 \mathrm{~m}^{3} / \mathrm{ha}$ to $2.2547 \mathrm{~m}^{3} / \mathrm{ha}$. The total volume of Gonystylus spp. of the 10 PSPs is $3.8019 \mathrm{~m}^{3} / \mathrm{ha}$. For trees with diameter class $>60 \mathrm{~cm}$ represent 59.3% of the total volume or $2.2547 \mathrm{~m}^{3} / \mathrm{ha}$.

Table 16: Volume for 10 PSPs per hectare of Gonystylus spp. by diameter classes and species

Species		Diameter class (cm)			Total
	$10.1<29.9$	$30<44.9$	$45<59.9$	>60	
G. maingayi	0.0631	-	-	-	0.0631
G. brunnescens	-	-	0.1386	2.2547	2.3933
G. confusus	0.0221	-	-	-	0.0221
G. bancanus	0.1573	0.738	0.4281	-	1.3234
Total	0.2425	0.738	0.5667	2.2547	3.8019

6.0 COSTING

The expenditure for this Activity amounted to RM315,611.00. The breakdown of the expenditure according to activity is shown in Table 17. The total budget allocated for this project was US\$ 131,800 and Government Contribution (direct and in-kind) US\$ 66,230.

Table 17: Activity Cost

ACTIVITIES	EXPENDITURE (RM)		TOTAL
	ITTO	GOM	
Acquisition of inventory equipment	-	$34,326.00$	$34,326.00$
Inventory work in the field	$177,000.00$	-	$177,000.00$
Data validation, processing and analysis	-	-	-

ACTIVITIES	EXPENDITURE (RM)		TOTAL
	ITTO	GOM	
Data validation, processing and analysis	-	-	-
Tree identification course to FDPM staff and contractor workers	13,800.00	-	13,800.00
Establishment and enumeration of 10 PSPs	43,335.00	-	43,335.00
Compilation of data, screening of data, and processing of data gathered from first enumeration of PSPs	-	-	-
Report and seminar	47,150.00	-	47,150.00
TOTAL	281,285.00	34,326.00	315,611.00
ITTO contribution - US	US\$ 131,800		
GOM contribution (direct and in-kind) - Us	US\$ 66,230		

7.0 STEM CONTENT COMPARISON BETWEEN 59 SAMPLE UNITS AND NFI-4

Based on the National Forest Inventory Four (NFI 4) that was carried out by the Forestry Department Peninsular Malaysia (FDPM) between 2002 and 2004, for Gonystylus spp. tree of size $\geq 10 \mathrm{~cm}$ dbh in Peninsular Malaysia is 1.14 stem per hectare see Table 18. For 59 SUs the same diameter class $>10 \mathrm{~cm}$ dbh, it is recorded 3.5 stem/ha. Table 19 shows the percentage distribution according to diameter classes where 16.21% of the total number of trees is in diameter class $10<15 \mathrm{~cm}, 50.38 \%$ in class $15<30 \mathrm{~cm}, 17.81 \%$ in class $30<45 \mathrm{~cm}, 13.87 \%$ in class $45<60 \mathrm{~cm}$ and 1.73% in diameter class $\geq 60 \mathrm{~cm}$. Table 19 also shows the percentage distribution by diameter classes of the 59 SU units stem content.

Table 18: Number of stem per hectare of Gonystylus spp. in Peninsular Malaysia according to the Fourth National Forest Inventory (NFI4).

Species		Diameter class (cm)				Total
	$\mathbf{1 0}<\mathbf{1 5}$	$\mathbf{1 5}<\mathbf{3 0}$	$\mathbf{3 0}<\mathbf{4 5}$	$\mathbf{4 5}<\mathbf{6 0}$	$>\mathbf{6 0}$	
G. spp.	0.23289300	0.61550300	0.16873000	0.13094000	0.01636900	1.16443500
G. bancanus	0.00000000	0.10844000	0.08087000	0.06836086	0.00854588	0.26621674
G. maingayi	0.00000000	0.00000000	0.00639716	0.00000000	0.00000000	0.00639716
Total	$\mathbf{0 . 2 3 2 8 9 3 0 0}$	$\mathbf{0 . 7 2 3 9 4 3 0 0}$	$\mathbf{0 . 2 5 5 9 9 7 1 6}$	$\mathbf{0 . 1 9 9 3 0 0 8 6}$	$\mathbf{0 . 0 2 4 9 1 4 8 8}$	$\mathbf{1 . 4 3 7 0 4 8 9 0}$

Table 19: Comparison on Percentage Distribution of Stem content of Gonystylus by Diameter Classes

Enumerations Methods		Diameter class (cm)				Total
	$\mathbf{1 0}<\mathbf{1 5}$	$\mathbf{1 5}<\mathbf{3 0}$	$\mathbf{3 0}<\mathbf{4 5}$	$\mathbf{4 5}<\mathbf{6 0}$	$\mathbf{> 6 0}$	
NFI-4	16.21%	50.38%	17.81%	13.87%	1.73%	100%
59 SU	46.9%	38.2%	8.28%	6.63%	100%	

For Aquilaria spp. the stem content of NFI-4 for trees of size $\geq 10 \mathrm{~cm}$ dbh is 0.62 stem/ha and for the 59 SUs while it is 2.27 stem/ha see Table 20 and Table 5). Table 21 shows the NFI-4 stem content distribution by percentage where 47.57% of the total number of trees is in diameter class $10<15 \mathrm{~cm}, 31.98 \%$ in class $15<30 \mathrm{~cm}, 16.27 \%$ in class $30<45 \mathrm{~cm}, 2.91 \%$ in class $45<60 \mathrm{~cm}$ and 1.27% in diameter class $\geq 60 \mathrm{~cm}$. Table 21 also shows the percentage distribution by diameters classes of the 59 SU units stem content.

Table 20 : Number of stem per hectare (Stem/Ha) of Aquilaria spp. in Peninsular Malaysia According to Fourth National Forest Inventory (NFI4).

Species		Diameter class (cm)				Total
	$\mathbf{1 0 . 1 - 1 4 . 9}$	$\mathbf{1 5 . 0 - 2 9 . 9}$	$\mathbf{3 0 . 0 - 4 4 . 9}$	$\mathbf{4 5 . 0 - 5 9 . 9}$	>60	
Aquilaria spp.	0.29475	0.19812	0.1008	0.01803	0.00787	0.61957
Total	0.29475	0.19812	0.1008	0.01803	0.00787	0.61957

Table 21 : Comparison on Percentage Distribution of Stem content of Aquilaria spp. by Diameter Classes

Enumera- tions Methods		Diameter class (cm)				Total

NFI-4 inventory shows the stem content for Intsia spp. is 0.813 trees/ha (Table 22). Based on the same diameter class ($>10 \mathrm{~cm} \mathrm{dbh}$) the stem content for the 59 SU units is 0.047 stem/ha and it is only confined in diameter class $>60 \mathrm{~cm}$ (shown in Table 6). The distribution percentage of the stem content of NFI-4
for the Intsia spp. is shown in Table 22. The table shows that 2.15\% of the total number of trees is in diameter class $10<15 \mathrm{~cm}, 52.63 \%$ in class $15<30 \mathrm{~cm}$, 26.16% in class $30<45 \mathrm{~cm}, 11.06 \%$ in class $45<60 \mathrm{~cm}$ and 8% in diameter class $>60 \mathrm{~cm}$. For the stem content of the 59 SU units it is found only confined to diameter class $>60 \mathrm{~cm}$.

Table 22 : Number of Stem (Stem/Ha) of Intsia spp. in Peninsular Malaysia According to Fourth National Forest Inventory (NFI4).

Species		Diameter class (cm)				Stem/Ha
	$\mathbf{1 0 . 1 - 1 4 . 9}$	$\mathbf{1 5 . 0 - 2 9 . 9}$	$\mathbf{3 0 . 0 - 4 4 . 9}$	$\mathbf{4 5 . 0 - 5 9 . 9}$	>60	
Intsia spp.	0.01750119	0.42783986	0.21271499	0.08994245	0.06502710	0.81302559
Total	$\mathbf{0 . 0 1 7 5 0 1 1 9}$	$\mathbf{0 . 4 2 7 8 3 9 8 6}$	$\mathbf{0 . 2 1 2 7 1 4 9 9}$	$\mathbf{0 . 0 8 9 9 4 2 4 5}$	$\mathbf{0 . 0 6 5 0 2 7 1 0}$	

Table 23 : Comparison on Percentage Distribution of Stem Content of Intsia spp. According to Diameter Classes

Enumer- ations Methods	$\mathbf{1 0 . 1 - 1 4 . 9}$	$\mathbf{1 5 . 0 - 2 9 . 9}$	$\mathbf{3 0 . 0 - 4 4 . 9}$	$\mathbf{4 5 . 0 - 5 9 . 9}$	$\mathbf{> 6 0}$	TOTAL Stem/ha
	47.57	31.98	16.27	2.91	1.27	
59 SU	86.21		10.15	3.64	-	100%

The above deliberation shows that the 59 SU units selected in this study are sufficient to be used to set growth plots for Gonystylus spp. and Aquilaria spp. since it closely reflected stem distribution by diameter classes of the NFI-4 stand content. For Intsia spp. further selection of the NFI-4 sampling units for setting growth plot as what has been successfully achieve for Gonystylus spp.. The deliberation has also indicated that the reliability of NFI-4 SU units data for locating species occurance.

8.0 CONCLUSION

The results reported in this study must not to be used for quantifying the distribution of Gonystylus spp. (Ramin), Aquilaria spp. (Agarwood) and Intsia spp. (Merbau) species in Peninsular Malaysia because the 59 sampling units and 10 permanent sampling plots (PSPs) are not adequate in term of number of sample and not representing all strata or forest types in Peninsular Malaysia. This report should be treated as providing information for later analysis on successive periodical measurement and for later analysis on the 10 PSPs regarding growth. Sufficient information on growth and population dynamics is essential for better management and species conservation.

9.0 REFERENCE

Anon,(2002) Field Manual, Fourth National Forest Inventory (NFI-4). Forestry Department Peninsular Malaysia. Jalan Sultan Salahuddin, K.L

Anon,(2007) Laporan Inventori Hutan Nasional Ke Empat Semenanjung Malaysia, Jabatan Perhutanan Semenanjung Malaysia. Jalan Sultan Salahuddin, K.L

Soerianegara \& R.H.M.J. Lemmens (eds), 1994. Timber tree: major commercial timbers. In Plant Resources of South-East Asia (PROSEA) No. 5(1).

Whitmore, T.C., (1972). Tree Flora of Malaya. Longman Group, London.
Whitmore, T. C., ed. (1973). Tree Flora of Malaysia. Longman Group, London

Yunus (2000). Modelling the Growth of the Logged over Inland Production Forests of Peninsular Malaysia with Forest Management Consideration. PhD Thesis. De Monfort University, UK. pg 22

APPENDIX 1

No.	State	District	*PRF	Compt.	Stratu	Forest Type	UP. No
1	Johor	Johor Timur	Lenggor	53	12	Moderate \& Poor Virgin Forest	J 024
2	Johor	Johor Timur	Lenggor	15	12	Moderate \& Poor Virgin Forest	J 042
3	Johor	Johor Timur	Lenggor	140	20	Logged-over Forest (1-10 year)	J 057
4	Johor	Johor Selatan	Ma'okil	245	22	Logged-over Forest (21-30 year)	J 099
5	Johor	Johor Selatan	FRS Labis	-	22	Logged-over Forest (21-30 year)	J 111
6	Johor	Johor Selatan	Panti	58	23	Logged-over Forest (>30 year)	J 146
7	Johor	Johor Selatan	North Ayer Hitam	20	31	Virgin Peat Swamp Forest	J 174
8	Johor	Johor Selatan	North Ayer Hitam	11	31	Logged-over Peat Swamp Forest	J 205
9	Johor	Johor Timur	Gunung Arong Tambahan	30	32	Logged-over Peat Swamp Forest	J 205
10	Johor	Johor Timur	Gunung Arong	-	32	Logged-over Peat Swamp Forest	J 210
11	Johor	Johor Selatan	Ulu Sedili	7	32	Logged-over Peat Swamp Forest	J217
12	Kedah	Kedah Utara	Koh Mai	15	12	Moderate \& Poor Virgin Forest	K 021
13	Kedah	Kedah Utara	Chebar	19	12	Moderate \& Poor Virgin Forest	K 023
14	Kedah	Kedah Utara	Rimba Telui	60	21	Logged-over Forest (12-20 year)	K 092
15	Kedah	Kedah Tengah	FRS Ulu Muda		22	Logged-over Forest (21-30 year)	K 108
16	Kedah	Kedah Utara	Rimba Telui	81	22	Logged-over Forest (21-30 year)	K 115
17	Kedah	Kedah Selatan	Padang Terap	45	23	Logged-over Forest (>30 year)	K 129
18	Kedah	Kedah Utara	Chebar	3	23	Logged-over Forest (>30 year)	K137
19	Kelantan	Kelantan Barat	Jentiang	12	23	Logged-over Forest (>30 year)	D 142

No.	State	District	*PRF	Compt.	Stratu	Forest Type	UP. No
20	N Nembilan	N. Sembilan Timur	Tampin	17	11	Superior and Good Virgin Forest	N 015
21	N. Sembilan	N. Sembilan Timur	Tebong	14	20	Logged-over Forest (1-10 year)	N 063
22	N.Sembilan	N. Sembilan Barat	Kenaboi	40	21	Logged-over Forest (12-20 year)	N 084
23	N.Sembilan	N. Sembilan Barat	Gapau	21	21	Logged-over Forest (12-20 year)	N 091
24	N.Sembilan	N. Sembilan Barat	Triang	20	23	Logged-over Forest (>30 year)	N 138
25	N.Sembilan	N. Sembilan Barat	Pelangai	1	50	Protection Forest	N 174
26	P. Pinang	P. Pinang	Bukit Panchor	2	50	Protection Forest	P 1407
27	Pahang	Jerantut	Tekam	112	11	Superior and Good Virgin Forest	C 011
28	Pahang	Rompin	Lesung	226	22	Logged-over Forest (21-30 year)	C 102
29	Pahang	Gambang	Bekelah	396	22	Logged-over Forest (21-30 year)	C 107
30	Pahang	Bentong	Lentang	81	23	Logged-over Forest (>30 year)	C 137
31	Perak	Hulu Perak	Gerik	49	11	Superior and Good Virgin Forest	A 005
32	Perak	Hulu Perak	Temenggor	22	12	Moderate \& Poor Virgin Forest	A 028
33	Perak	Hulu Perak	Temenggor	79	12	Moderate \& Poor Virgin Forest	A 029
34	Perak	Hulu Perak	Belum	350	12	Moderate \& Poor Virgin Forest	A 031
35	Perak	Hulu Perak	Temenggor	78	12	Moderate \& Poor Virgin Forest	A 033
36	Perak	Hulu Perak	Bujang Melaka	14	12	Moderate \& Poor Virgin Forest	A 049
37	Perak	Hulu Perak	Temenggor	238	20	Logged-over Forest (1-10 year)	A 065
38	Perak	Kuala Kangsar	Bintang Hijau	128	22	Logged-over Forest (21-30 year)	A 100

| No. | State | District | *PRF | Compt. | Stratum | Forest Type |
| :--- | :--- | :--- | :--- | :---: | :---: | :--- | :--- | :--- | UP. No

No.	State	District		*PRF		Compt.	Stratum	Forest Type		UP. No
57	Terengganu	Terengganu Selatan	Jengai	104	20	Logged-over Forest $(1-10$ year)	T 075			
58	Terengganu	Terengganu Selatan	Gunung Tebu	23	22	Logged-over Forest $(21-30$ year)	T 112			
59	Terengganu	Terengganu Selatan	Bukit Bauk	22	23	Logged-over Forest (>30 year)	T 146			

*PRF - Permanent Reserve Forest UP. No - Code for each Sampling Unit

Strata	Plot No.	Forest Reserve	Species	$1.5 \mathrm{~m}<10 \mathrm{~cm}$			$10.1<29.9 \mathrm{~cm}$			$30<44.9 \mathrm{~cm}$			$45<59.9 \mathrm{~cm}$			>60cm			*TOTAL		
				No.of stem	Basal Area	Volume	No.of stem	Basal Area	Volume	No.of stem	Basal Area	Volume	No.of stem	Basal Area	Volume	No.of stem	Basal Area	Volume	No.of stem	Basal Area	Volume
11	N015	Tampin	G. maingayi				1	0.065	0.631										1	0.065	0.631
12	T047	Jerangau	G. brunnescens													1	0.614	7.581	1	0.614	7.581
	T051	Jerangau																	0	0.000	0.000
22	A111	Papulut	G. confusus				1	0.037	0.221										1	0.037	0.221
23	T146	Bukit Bauk	G. brunnescens													2	1.075	14.966	2	1.075	14.966
32	B123	Sg. Karang	G. bancanus				1	0.048	0.251	2	0.165	1.292							3	0.213	1.543
	B124	Raja Musa	G. bancanus				1	0.068	0.485	2	0.245	2.329	2	0.398	4.281				5	0.711	7.095
	B125	Raja Musa	G. bancanus							1	0.110	1.292							1	0.110	1.292
	B141	Raja Musa	G. bancanus	11.1	0.006		4	0.153	0.837	3	0.323	2.467							7	0.482	3.304
	J210	Gunung	G. brunnescens										1	0.164	1.386				1	0.164	1.386
		Arong	G. confusus	22.2	0.005														0	0.005	0.000
TOTAL FOR 10 plots				33.3	0.011		8	0.371	2.426	8	0.843	7.38	3	0.562	5.667	3	1.689	22.547	22	3.476	38.019

[^0]: * $1.5 \mathrm{~m}-\geq 1.5$ meter height

