POTENTIEL SUR PIED DE *PRUNUS AFRICANA* (ROSACEAE) DANS LA ZONE DE WALIKAKE, PROVINCE DU NORD - KIVU EN REPUBLIQUE DEMOCRATIQUE DU CONGO

Rapport présenté par l'Institut Congolais pour la Conservation de la Nature (ICCN), Autorité scientifique de la CITES pour la République Démocratique du Congo, dans le cadre du projet « Avis de commerce non préjudiciable sur *Prunus africana* (Hook.f.) Kalkman en RDC»

Décembre 2013

Table des matières

Résumé exécutif	4
Executive summary	7
Chapitre 1 . Introduction	10
1.1. Contexte général et problème	10
1.2. Objectifs	12
1.3. Plan du document	12
Chapitre 2. Stratégie utilisée pour proposer des mesures de gestion durable de <i>P. africana</i> dans le Nord-Kivu	
Chapitre 3. Présentation de <i>Prunus africana</i>	16
3.1. Aire de distribution	16
3.2. Sites de production	16
3.3. Biologie et écologie de P. africana	17
3.4. Usages	18
Chapitre 4. Milieu	19
4.1. Situation géographique et politico-administrative	19
4.2. Relief	19
4.3. Climat	19
4.5. Les activités socio-économiques	19
4.6. Impact des activités agricoles sur l'environnement	20
Chapitre 5. Potentiel sur pied de <i>Prunus africana</i> dans le Nord Kivu et quota exploitable	21
5.1. Identification des sites de production à sonder dans le Nord Kivu	21
Figure 1 : carte d'occupation des sols des sites à sonder dans le territoire de Walikalé, nord Kiv	⁄u. 22
5.3. Collecte des données	22
5.3.1. Acquisition du matériel et logistique	22
5.3.3. Méthode d'inventaire de <i>Prunus africana</i>	23
5.5. Résultats des inventaires	26

5.5.1. Chronogramme des opérations	26
T. T	_
5.5.2. Superficie sondée et taux de sondage	26
	•
5.5.3. Densité des tiges de <i>Prunus africana</i>	28
5.5.4. Effectifs totaux des tiges vivantes	34
5.5.6. Estimation du quota annuel d'écorce à Prélever	35
Conclusion et recommandations	38
Références bibliographiques	41

Résumé exécutif

Prunus africana (Hook.f.) Kalman (Rosaceae) globalement connu sous le vocable Pygeum, est un arbre qui pousse dans les forêts afromontagnardes entre 1500 et 3000 m d'altitude, et sur sol volcanique et sous climat frais d'altitude. En République Démocratique du Congo (RDC), l'espèce a été signalée dans quatre provinces à savoir la province Orientale, la province du Katanga, la province du Kivu Nord et la province du Kivu Sud. Dans son aire de distribution, les populations de Prunus sont discontinues, et fragmentées.

En 2010, le Gouvernement de la RDC a soumis à l'Organisation Internationale des Bois Tropicaux (OIBT) un projet intitulé « Avis de Commerce Non Préjudiciable sur Prunus africana (Hook.f.) Kalman dans le Nord et Sud Kivu, République Démocratique du Congo (RDC) ». Le projet traduit une réponse aux questionnements posés en 2007 par la CITES sur la gestion de Prunus africana en RDC; questions relatives à la clarification de potentiel sur pied, à la définition des quotas sur une base scientifique, à la sylviculture, à l'approfondissement des connaissances biologiques et écologiques, et au renforcement des capacités pour un meilleur contrôle et suivi des récoltes. Le projet est exécuté par l'autorité scientifique CITES de la RDC, en l'occurrence l'Institut Congolais pour la Conservation de la Nature (ICCN). Les premiers travaux réalisés ont permis de lever la suspension qui pesait sur le pygeum de la RDC par la définition d'un quota de 72 tonnes d'écorces sèches par an dans les zones de Ibathaama et Mwenda basées dans le Nord Kivu. Mais, depuis lors, le projet a connu un grand retard dans sa mise en œuvre pour diverses raisons. Depuis Août 2013, l'ICCN a opté pour l'approche faire-faire en vue de l'optimisation de la mise en œuvre du projet. Cette approche consiste à confier les missions d'inventaires au personnel du secteur privé formé. L'Agence d'exécution elle, va se limiter à effectuer des missions de contrôle pour s'assurer que les résultats présentés par les privés ont été récoltés suivant la méthode indiquée. Du 28 Septembre au 06 Octobre 2013, l'ICCN a organisé une formation au Jardin Botanique de Kisantu, aux fins de former le personnel actif de l'administration en charge des forêts, de l'ICCN, et aussi des sociétés privées PLAVUMA et Maison KAHINDO sur les techniques modernes d'inventaire d'aménagement de Prunus africana. Au lendemain de cette formation reçue le groupe «KAHINDO MUVUNGA» a mobilisé ses ingénieurs et techniciens sur le terrain pour identifier les sites sécurisé de production de Prunus africana, sensibiliser les populations attenantes à ces sites sut la reprise des travaux d'inventaires dans leurs zones, et enfin d'appliquer sur le terrain les éléments de formation et notamment l'inventaire du stock sur pied des tiges de *Prunus africana*. Le présent document fait une économie des premiers résultats obtenus dans le cadre de cette mission, considérée comme une mission de formation par le travail.

.

La mission a identifié trois principales zones jugées sécurisées et pouvant abriter l'espèce Prunus africana à savoir : Bapiri, Baswagha, et Walikale. Les premiers inventaires ont été réalisés dans la zone de Walikale. La méthode utilisée pour apprécier le potentiel de P. africana dans cette zone, est une combinaison de la méthode traditionnelle d'inventaire d'aménagement à celle dite ACS (Adaptive Clusters Sampling) ou échantillonnage adapté aux grappes. Elle a pour base la méthode conventionnelle d'inventaire d'aménagement généralement utilisée en forêt dense en RDC. La méthode ACS est indiquée en ce sens qu'elle permet de capter les grappes ou « clusters » de Prunus comme espèce grégaire. Un total de 69 personnes comprenant 57 agents et 12 agents des force de l'ordre distribués en trois équipes ont conduit ces inventaires. Le travail s'est déroulé en deux semaines entre le 25 octobre et le 15 novembre 2013. Un total de sept collines ont été parcourues dans cette zone à savoir : Buhimba kasopo, Kano, Kamuli, Kateku, Kalongué kasopo, Ngambi et Runguta. Le taux de sondage réalisé est de 2,05% pour une superficie utile de 2 805,2 ha. Un total de 196 tiges de Prunus africana de diamètre ≥ 10 cm a été recensé dans les 58 ha de forêts prospectées. Cent quatre vingt trois (183) tiges recensées sont vivantes, représentant 93,3% du total des tiges. La densité moyenne des tiges vivantes est de 3,2 tiges/ha dans les sept collines. La densité la plus forte se trouve à Kalongue Kasopo avec 6,6 tiges/ha. Deux collines ont été jugées non propices à l'exploitation des écorces de Prunus africana, du fait notamment de l'allure très irrégulière du spectre diamétrique des tiges. Il s'agit des collines de Kateku et Ngambi. La récolte de l'espèce est par contre autorisable sur les autres collines où il sera possible de récolter un total de 30,12 tonnes d'écorces sèches de Prunus africana selon une rotation de 12 ans pour des besoins de gestion durable. Cette exploitation ne sera possible qu'après avoir clairement fait le parcellaire qui aboutira au développement du plan simple de gestion global. De manière plus précise, les mesures d'aménagement à compléter pour s'assurer que l'exploitation des écorces ne soit pas préjudiciable à la survie des tiges de P. africana comporte entre autres:

- La sensibilisation continue des autorités et communautés locales sur l'importance socio-économique de *P. africana*;

- La poursuite des inventaires dans les autres zones à Prunus plus ou moins sécurisées dans le Nord Kivu ;
- La conduite des études d'arbres plus complètes qui permettent d'apprécier réellement la productivité moyenne d'une tige exploitable de *P. africana* dans le Nord Kivu;
- La cartographie détaillée des sites prospectées;
- Le développement d'un parcellaire approprié des zones déjà prospectées en montrant clairement les limites des assiettes annuelles d'exploitation et les quotas correspondant par forêt/clans;
- La conduite des inventaires systématiques (ou d'exploitation) dans chacune des assiettes annuelles délimitées ;
- La récolte des écorces sur les tiges ayant au moins 30 cm de diamètre à hauteur de poitrine ;
- Le prélèvement des deux quarts opposés de chaque tige entre le niveau de hauteur de poitrine et le point d'insertion de la première grosse branche ;
- Le respect d'une rotation de 6 ans entre les récoltes ;
- La mise sur pied d'un système de contrôle et de traçabilité efficace des exploitations qui seront faites ;
- La poursuite des recherches sur la biologie et l'écologie de *P. africana*

Executive summary

Prunus africana is a species of the Rosaceae family, known under its commercial name as pygeum or African chery. It is a mountane tree species of the tropical Africa. In the Democratic Republic of Congo (DRC), *P. africana* is found in four provinces including: Katanga, Orientale, North Kivu, and South Kivu. In its distribution area, populations of P. Africana are scattered.

Recognizing the shortcomings in scientific information related to the sustainable harvesting of *Prunus africana*, the government of DRC submitted to the International Tropical Timber Organization (ITTO) for funding the project entitled "Non-detriment findings (NDF) for *Prunus africana* (Hook.f.) Kalkman in the Democratic Republic of Congo". A memorandum of understanding (MoU) was signed on 15th may 2011 between the International Tropical Timber Organization (ITTO), the Government of the Democratic Republic of Congo (DRC) represented by the Ministry of environment, nature conservation and tourism (MECNT), and the Congolese Institute for Nature Conservation (ICCN). The MoU was signed under the program element "ensuring international trade in CITES listing tree species is consistent with their conservation". In the MoU, ITTO, engaged itself to disburse a total sum of 215 500.0 USD to DRC for the implementation of the activity "Non-detriment findings for *Prunus africana* (Hook.f.) Kalman in North and South Kivu, Democratic Republic of Congo" or "NDF Prunus in DRC"

The activity was approved to be conducted in ten (10) months. It started in April 2011 and was scheduled to be completed in January 2012. The Congolese Institute for Nature Conservation (ICCN) has been appointed as the executing agency for the activity. ICCN is the CITES Scientific authority for DRC. The first main important output of the activity was the establishment of an annual quota of 72 tons of dried barks of *Prunus* based on the inventories conducted in 2011 in two areas including Ibathaama and Mwenda. But since theren the activity has encountered many delays in its implementation. Following the monitoring mission conducted by the Regional Coordinator of the ITTO – CITES program in Africa, the executing agency has decided to leave the private sector conduct themselves the management inventories. The role of ICCN staff will be reduced to the training of the personal of private societies and controlling the inventories conducted in the field. In that line, ICCN organized from 28th September to 06th October 2013 in the Kisantu botanical garden, a training workshop. The workshop trained some 12 persons coming from the forest administration,

ICCN and the two main local trade companies (PLAVUMA and KAHINDO) on how to conduct *Prunus* inventories.

From 20 October to 20 November 2013, one trade company, KAHINDO MUVUNGA sent his personnel composed of forest engineers' and technicians in the field with the aim to identify the safety production sites, to sensitize local population, and to conduct *Prunus* inventories. This document reports the main results obtained upon that mission, considered as a "working by learning mission".

A total of three safety zones of *Prunus africana* were identified including: Bapiri, Baswagha, and Walikale. The first inventories were conducted in Walikale, covering seventh hills including: Buhimba, Kano, Kamuli, Kateku, Kalongué kasopo, Ngambi and Runguta, for a total useful area of 2 805.2 ha.

The method used to evaluate the abundance of *P. africana* is called "Adaptive Clusters Sampling (ACS)". This method has its basis in the conventional forest inventory method often used to design the management plan in dense forests. The ACS method is advised since it captures the *Prunus* clustering characteristics. The average sampling intensity obtained is 2.05%...

A total of 196 stems of *Prunus* with diameter at least equal to 10 cm was counted. In this work, living (healthy) trees are those which are looking well, without dried branches. A total of 187 living trees were recorded representing 93.3% of the total population inventoried. The average density of living trees recorded is 3.1 stems/ha, the high density being at Kalongué kasopo hill. The hills of Kateku and Buhimba are those where the harvesting of *Prunus* barks should be banned, due to the irregular feature of the distribution of the stems among the entire population. About 70% of diameter classes are absent in Kateku and Ngambi, which is not suitable for a sustainable harvesting of that plant species. A total of 5 464.4 exploitable stems of *Prunus* can be estimated for the five production sites retained including: Buhimba, Kano, Kamuli, Kalongue kasopo, and Runguta. In these sites, the amount of *Prunus* barks that can be harvested on a sustainable basis is 30.12 tons of dried barks per year using a rotation of 12 years. This means that, a total of 24;5 in the four hills.

To ensure the conservation of *Prunus africana* in the North Kivu province, following actions should be conducted:

- The permanent sensitization of local populations and authorities in the economic importance of *P. africana*;
- The evaluation of the stock of *P. africana* in other production sites;
- The complete study of the productivity (yield) of *Prunus* trees in term of fresh bark production per exploitable tree;
- The complete mapping of the Kivu province with clear identification and description of production sites;
- The development of a complete simple management plan for each zone inventories before beginning of harvesting; this includes mapping, delimitation of annual harvesting plots, conducting systematic inventory of exploitable trees;
- Using a suitable harvesting method which can allow the bark to regenerate: harvesting 2/4 opposite of the trunk;
- Adopting a periodicity or rotation of 6 years between two harvesting campaigns on the same tree or $6 \times 2 = 12$ years between two harvesting campaigns on the same tree and on the same side of the tree;
- To settle a suitable control and monitoring system to better follow harvesters;
- the implementation of a huge research program on biology and ecology of *P. africana*.

Chapitre 1. Introduction

1.1. Contexte général et problème

La République Démocratique du Congo (RDC) est le pays africain le mieux nanti en potentiel forestier avec ses 128 millions d'hectares des forêts denses humides, soit 54 % de l'étendue du territoire national, 47 % du massif forestier tropical du continent et 6 % des forêts résiduelles du monde.

La forêt congolaise renferme une grande diversité biologique comprenant d'importantes quantités des produits utiles à l'homme, car servant de nourriture, de médicaments ou intervenant dans les services et dont l'importance n'est plus à démontrer.

Prunus africana (Hook.f.) Kalman (Rosaceae) globalement connu sous le vocable Pygeum, est un arbre qui pousse dans les forêts afromontagnardes entre 1500 et 3000 m d'altitude, et sur le sol volcanique et sous le climat frais d'altitude. Son aire de distribution englobe la Côte d'Ivoire, Bioko, Sao Tomé, Ethiopie, Kenya, Ouganda, Afrique du Sud, Madagascar, Congo, Cameroun et République Démocratique du Congo.

En République Démocratique du Congo, *Prunus* a été signalée dans quatre provinces à savoir la province Orientale, la province du Katanga, la province du Nord-Kivu et la province du Sud-Kivu. Dans son aire de distribution, les populations de *Prunus* sont discontinues, et fragmentées (Kibungu Kembelo 2008).

Prunus africana a été classée par l'Union Internationale pour la Conservation de la Nature comme espèce vulnérable. Ce fait a conduit à son classement dans l'annexe II de la Convention sur le Commerce International des espèces de faune et de flore sauvage menacées d'extinction (CITES). Le fait d'inclure Prunus dans l'annexe II de la CITES a été d'un grand concours pour la conservation de cette espèce en RDC. Cet acte a attiré l'attention de beaucoup de personnes sur les dangers que peut causer une exploitation et une exportation incontrôlées des écorces.

La RDC est partie à la Convention CITES depuis 1976. Le pays se doit donc de respecter strictement les procédures et principes relatifs à cette Convention.

Une des obligations fondamentales des pays membres de la CITES est la production avant toute exportation d'un produit listé en annexe II de cette convention, d'un Avis de Commerce Non Préjudiciable (ACNP). Cet Avis doit être émis par une Autorité scientifique crédible qui atteste que le volume d'exportation sollicité par le pays n'est pas préjudiciable à la conservation de cette espèce dans les forêts. L'ACNP est un document qui requiert des informations de qualité sur la localisation, la distribution, le stock, la croissance, et l'écologie de l'espèce indiquée. Ce genre d'information est souvent difficile à obtenir, rendant ainsi fastidieux, la justification des exportations.

Une autre obligation est que l'Organe de gestion CITES doit attester que les volumes ou poids (tonnages) exportés ont été obtenus légalement ; mais souvent il se pose des problèmes de capacités techniques pour mieux assurer le contrôle et le suivi.

Depuis quelques années la RDC éprouve des problèmes énormes avec la CITES et la Commission Européenne sur les exportations de *P. africana*. Suite aux rapports de certaines ONG qui signalaient une exploitation incontrôlée du Prunus dans les deux provinces du Kivu Le Comité pour les Plantes de la CITES a proposé au Gouvernement de la RDC de revoir à compter de l'année 2006, les quotas annuel de P. africana sur une base scientifique et d'élaborer une stratégie/plan d'action pour une gestion durable de P. africana en RDC (Navarro et al. 2008). Le rapport préparé et envoyé par l'Organe de gestion CITES a manqué des données scientifiques de qualité pour convaincre les membres du Comité pour les Plantes de la CITES. Ce Comité a donc recommandé au Gouvernement congolais de réduire le quota annuel qui était de 1000 tonnes et d'adopter une rotation raisonnable qui permette à l'écorce de régénérer. Les autorités congolaises ont, sur la base des informations recoupées sur les quantités de produits sollicitées dans les permis, proposé un quota prudent de 500 tonnes à la CITES. Les exportateurs n'ont jamais atteint ce quotas prudent, faute de matériel; les villageois récolteurs s'étant détournés de la récolte de pygeum qui pour eux n'était plus rentable. Trop de travail pour un mauvais salaire, disaient-ils. Aussi, le fait d'adopter un quota prudent de 500 tonnes n'a pas convaincu la CITES et la Commission européenne qui n'ont pas hésité de suspendre les exportations de Prunus en provenance de la RDC.

L'institut des Jardins Zoologiques et Botaniques du Congo (IJZBC) était jadis l'Autorité scientifique CITES Flore du pays. Mais depuis Février 2010, cet Institut a été dissous et fusionné avec l'Institut Congolais pour la Conservation de la Nature (ICCN). Et depuis cette date, le rôle d'Autorité scientifique CITES (flore et faune) en RDC est assuré par ce dernier.

En 2010, le Gouvernement de la RDC a soumis à l'Organisation Internationale des Bois Tropicaux (OIBT) un projet intitulé « Avis de Commerce Non Préjudiciable sur *Prunus*

africana (Hook.f.) Kalman dans le Nord et Sud Kivu, République Démocratique du Congo (RDC) ». Le projet traduit une réponse aux questionnements posés en 2007 par la CITES sur la gestion de *Prunus africana* en RDC; questions relatives à la clarification de potentiel sur pied, à la définition des quotas sur une base scientifique, à la sylviculture, à l'approfondissement des connaissances biologiques et écologiques, et au renforcement des capacités pour un meilleur contrôle et suivi des récoltes.

Le projet a permis de conduire l'inventaire de *P. africana* dans deux zones : Ibathama (5 000 ha) et Mwenga (600 ha). L'inventaire a été conduit entre le 10 septembre et le 02 Octobre 2011 et a permis de déterminer un quota prudent de 72 tonnes. Mais depuis lors, le déroulement du projet a connu des retards considérables notamment à cause du climat d'insécurité qui a prévalu dans la province du Nord-Kivu. Suite à la mission d'évaluation du Coordonnateur régional du programme OIBT – CITES conduite du 28 Août au 02 septembre 2013, la stratégie du projet a été revue dans le sens de la promotion de l'approche faire-faire par une forte implication du secteur privé dans la conduite des activités spécifiques liées aux inventaires.

Le présent document rapporte les premiers résultats obtenus dans le cadre des inventaires conduits par le groupe Kahindo Muvunga, une société privée œuvrant dans l'exportation des écorces sèches de *Prunus africana* dans le Nord Kivu.

1.2. Objectifs

L'objectif principal du travail est de relever les informations en rapport avec la l'exploitation et le potentiel sur pied de *P. africana* en vue de proposer des bases de gestion durable de cette espèce dans le Nord-Kivu.

Les objectifs spécifiques sont :

- (1) Identifier les principaux sites sécurisés de production de l'écorce de *P. africana* en RDC dans le Nord-Kivu;
- (2) Estimer le potentiel sur pied des tiges de *P. africana* dans les sites identifiés ;
- (3) Estimer le quota annuel à prélever selon des bases durables ;

1.3. Plan du document

Le présent document est structuré en cinq chapitres. En dehors du premier chapitre introductif susmentionné, le deuxième chapitre présente la nouvelle stratégie déployée par l'Autorité

scientifique pour collecter les informations en rapport avec le potentiel de *P. africana* dans le Nord-Kivu, le troisième chapitre présente l'espèce *P. africana*, le quatrième chapitre présente le milieu c'est-à-dire le Nord-Kivu. Le cinquième chapitre aborde le potentiel sur pied des tiges de *P. africana* et fait des simulations de quota. Le document s'achève par une conclusion qui débouche sur les mesures de gestion durable de *P. africana* dans le Nord Kivu.

Chapitre 2. Stratégie utilisée pour proposer des mesures de gestion durable de *P. africana* dans le Nord-Kivu

Le présent chapitre donne un aperçu global du programme OIBT/CITES en Afrique et du projet de la RDC sur *P. africana*.

L'Organisation Internationale des Bois Tropicaux (OIBT) s'est donnée pour priorité dans ses missions, de promouvoir la gestion durable des espèces classées dans l'annexe II de la CITES. L'OIBT et la CITES collaborent depuis les années 1990 dans le fonctionnement du Groupe de travail de la CITES sur les plantes. Depuis 2008, l'OIBT et la CITES collaborent dans le cadre d'un vaste programme de renforcement des capacités des pays sur le commerce durable de deux espèces d'arbres africaines classées à l'Annexe II de la CITES. Il s'agit de: *Pericopsis elata* (afrormosia ou assamela) et de *Prunus africana* (pygeum). Le programme conjoint OIBT-CITES conçu pour aider les Etats de l'aire de répartition à appliquer la CITES aux espèces d'arbres, est un bon exemple de coopération. En effet, les parties et les organisations intéressées par la conservation et l'utilisation durable des espèces sauvages sont invitées à fournir un appui financier ou technique aux Etats de l'aire de répartition pour garantir un commerce non préjudiciable des espèces CITES.

La première phase du programme s'est déroulée de 2008 à 2011 et a permis (1) de sortir *Pericopsis elata* du Cameroun de l'étude du Commerce important de la CITES, de lever le quota zéro des exportations des écorces de *Prunus africana* du Cameroun, (3) de lever la suspension qui pesaient sur le Commerce international du bois de *Pericopsis elata* du Congo Brazzaville, et enfin de lever la suspension du commerce international des écorces de *Prunus africana* en provenance de la République Démocratique du Congo.

La levée de la suspension des exportations du *Prunus africana* de la RDC a été prononcée grâce aux premiers résultats obtenus par l'ICCN, agence d'éxécution du projet « **Avis de Commerce Non Préjudiciable sur** *Prunus africana* (**Hook.f.**) Kalman dans le Nord et Sud Kivu, République Démocratique du Congo (RDC) » dans les sites de Ibataama et de Mwenda dans le Nord-Kivu. Le projet vise globalement à combler les vides d'informations sur la densité, la phénologie, la régénération, et l'écologie de *Prunus africana* tant en forêt naturelle qu'en plantation en vue de produire des bases scientifiques utiles à l'élaboration d'un avis de commerce non préjudiciable de cette espèce pour l'Autorité Scientifique (AS)

CITES Flore de la République Démocratique du Congo dans les provinces du Nord et Sud Kivu.

Malheureusement depuis 2011, après la levée de la suspension, le projet *Prunus* a connu des retards considérables liés notamment à l'insécurité dans le Nord-Kivu, l'éloignement des sites de production par rapport à la coordination du projet basée à Kinshasa. La mission d'évaluation du projet conduite du 28 Août au 02 septembre 2013 par le Coordonnateur Régional (CR) du programme OIBT – CITES en Afrique a abouti, en concertation avec l'ICCN, à revoir la stratégie de mise en œuvre du projet dans le sens de promouvoir l'approche faire-faire. Cette approche consiste à déléguer les missions de conduite des inventaires aux privés compte tenu de leur rapprochement des sites de production. L'ICCN en tant que Agence d'exécution du projet va essentiellement axer ses interventions sur les missions de formation et de contrôle des travaux réalisés par les privés pour garantir la crédibilité des inventaires. Plus concrètement, l'ICCN va former le personnel des privés sur les techniques modernes d'inventaires (aménagement et exploitation), et de récolte de *Prunus*, et va contrôler les inventaires et récoltes qui seront faits par le secteur privé avant la livraison des permis CITES par l'Organe de gestion.

Comme réaction à la mission du Coordonnateur régional, une formation sur les techniques modernes d'inventaire de *Prunus africana* a été organisée du 30 septembre au 06 Octobre 2013 au Jardin Botanique de Kisantu, basé à environ 180 km de Kinshasa. Une vingtaine de personnes venant de l'ICCN, du Ministère de l'Environnement, Conservation de la Nature et Tourisme (MECNT), et du secteur privé (Groupe PLAVUMA et groupe KAHINDO MUVUNGA) ont suivi cette formation.

Chapitre 3. Présentation de Prunus africana

3.1. Aire de distribution

Prunus africana (Hook.f.) Kalman (*Rosaceae*) globalement connu sous le vocable *Pygeum*, est un arbre qui pousse dans les forêts afromontagnardes entre 1500 et 3000 m d'altitude, et sur sol volcanique et sous climat frais d'altitude. Son aire de distribution englobe la Côte d'Ivoire, Bioko, Sao Tom, Burundi, Ethiopie, Kenya, Ouganda, Afrique du Sud, Madagascar, Congo, Cameroun et République Démocratique du Congo (Betti 2008).

En République Démocratique de Congo, *Prunus* a été signalée dans quatre provinces à savoir la province Orientale (dans sa partie nord est), la province du Katanga, la province du Kivu Nord et la province du Kivu Sud (Kibungu Kembelo 2008).

Les noms vernaculaires diffèrent d'une zone à l'autre. Ainsi par exemple les populations Bashi du Sud Kivu l'appellent « muhumba – humba », les Nande du Nord-Kivu la désigne sous le nom de « ngote » tandis que les populations de Kaniama dans la province du Katanga appellent cette espèce « tshikongokongo ».

3.2. Sites de production

Plusieurs missions de l'ICCN ont permis d'identifier certains sites (forêts ou villages) à *Prunus africana* et ceux où l'exploitation de l'écorce était jadis effectuée avant la suspension du commerce. Il s'agit de sites suivants :

- Dans le Nord-Kivu:
- > Territoire de Beni : Mabutua Kenya, Kaynama, Vuhumira, Ibatama, Malambo, bassin de lepia ;
- ➤ Territoire de Lubero: Kasugho, Bubogho, Itendi, Mabeta, Kambau, Dingili, Ebiye, Mandikeni, Kirima, Masoya, Mabalako et Kantine, Kyanganda, Masinzi, Liboyo, Kato et Ishiala où la densité de l'essence est la plus élevée. Font également partie du territoire de Lubero, le bassin de Luholu, les forêts de Mbingi, Mutiri et celles environnantes de la mission catholique de Lubango.
- Pour le Sud-Kivu:
- > Territoire de Mwenga;
- Territoire de Kabare ;
- > Territoire de Shabunda;

- > Territoire de Fizi;
- > Territoire d'Uvira.

Dans le territoire de Mwenga, 273.200 hectares des forêts d'altitude ont été identifiées comme renfermant l'espèce *Prunus africana*. Dans les autres territoires restant, *P. africana* a été signalée dans les forêts de Kalehe, Siabala, Birinye, Katana et sur les versants de Minembwe.

Les sites sus-relevés avaient été identifiés lors de la mission d'état des lieux conduite en juin 2011. Les sites ci-après ont été identifiés lors de la deuxième mission du projet, relative à l'inventaire de *P. africana* en Septembre – Octobre 2011. Il s'agit, pour le territoire d'Oicha, des sites de : Ibathama, Kiribata, Mwenda, Buliya, Murambi, Kayinama, Kakalali, Papi, Kaliva, Vuhumira, Malambo.

La mission conduite par le personnel du Groupe KAHINDO MUVUNGA conduite en début Octobre 2013 a permis de délimiter trois principaux sites de production sécurisés dans le Nord Kivu à savoir : Bapiri, Baswagha, et Wanianga.

3.3. Biologie et écologie de P. africana

P. africana est un arbre à fut droit pouvant atteindre 30 m de hauteur et 1.5 m de diamètre. La base du tronc est cylindrique, sans contreforts. L'écorce noire à brune est fissurée et peut avoir plus ou moins 4 cm d'épaisseur. Elle s'exfolie en plaquettes rectangulaires. La tranche est moins dure et fibreuse (très dur à l'état sec). L'aubier est différencié, gris, de 4 à 6 cm d'épaisseur. L'exsudat est rose pâle à odeur d'amande. Les feuilles sont elliptiques – oblongues, acuminées épaisses et coriaces de 6 à 10 cm de larges, alternes simples à nervures médianes saillantes. Les racèmes atteignent 6 cm de long, le réceptacle florifère est campanulé, les pétales sont obovales ou elliptiques. Les fruits sont des drupes globuleuses indéhiscentes de 1,5 cm de diamètre, de couleur rose pâle à noire. La graine est globuleuse, jaune et protégée par une mince enveloppe. L'habitat préféré est constitué des forêts sémicaducifoliées et galeries forestières sur les flancs des montagnes de 800 à 2 700 m d'altitude.

P. africana est une espèce héliophile. Mais la faible régénération observée au niveau des semis contribue à la réduction des populations et constitue un des problèmes relevés pour la conservation de cette espèce. Les semis poussent mieux lorsqu'ils sont exposés au soleil, avec une bonne humidité. Les fruits sont des drupes très appréciées par divers oiseaux et

mammifères. Ces oiseaux et mammifères jouent également un rôle important dans la dissémination de l'espèce, les études ayant prouvé que la dispersion des graines à partir des semenciers n'était pas efficace.

3.4. Usages

Dans le secteur de Rwenzori, l'écorce est mélangée dans le café ou le thé pour la prévention de la prostate et des hémorroïdes. Elle est aussi utilisée comme vermifuge. Les graines ont des propriétés aphrodisiaques. Les écorces du tronc et feuilles renferment le complexe lipidostérolique (n. docosanol et sistostérol) utilisé dans le traitement des troubles mictionnels de l'adénome prostatique chez l'homme.

Des extraits de l'écorce de cette plante ont été identifiés et patentés comme étant actifs dans le traitement de l'hypertrophie prostatique bénigne. Des capsules contenant des extraits d'écorce sont en vente en Europe depuis plus de 30 ans (Cunningham et Mbenkum 1993).

En agroforesterie, *P. africana* est utilisée comme engrais vert, mais aussi elle sert à la délimitation des parcelles mitoyennes et comme arbre d'ombrage (du cacaoyer et du quinquina). Le bois produit un charbon très apprécié par les populations locales.

Chapitre 4. Milieu

4.1. Situation géographique et politico-administrative

Les sites d'inventaire choisis se situent dans le Nord-Kivu :territoire de Walikale, collines de Buhimba, Kano, Kamuli, Katéku, Kalongué Kasopo, Ngambi et Runguta (Figure 1a en annexe)..

4.2. Relief

La zone d'inventaire est située sur le versant Ouest du massif de Ruwenzori. Son relief est caractérisé par une succession des crêtes rocailleuses par endroit, séparées par des rivières et crevasses.

Du point de vue de la topographie, les sites caractérisés par des collines (crêtes) à pentes très abruptes dont le pourcentage varie entre 44 à 141,7 %. Ces différentes collines sont séparées par de profonds ravins souvent infranchissables dont la combinaison avec les collines offre une vue panoramique d'une région fortement ondulée et circonvolutionnée. Le relief plus accidenté, a rendu difficile et ardu les travaux de terrain.

4.3. Climat

Le climat local jouit d'une forte humidité et des pluies spontanées du massif de Rwenzori. Les effets de brouillard, qui accentuent la pluviométrie, sont visibles à Mwenda et partout ailleurs. La saison sèche est de courte durée, elle va seulement de décembre à février. La température moyenne varie entre 22°C et 25°C.

4.5. Les activités socio-économiques

La population s'adonne aux activités socio-économiques diverses telles l'agriculture, l'élevage, et le petit commerce:

- pour l'agriculture on distingue les cultures vivrières (manioc, bananes, haricots, riz, etc.), les cultures pérennes ou des rentes (café, cacao, papaye, vanille, etc...) et arboricoles (Eucalyptus, Cedrela odorata, Maesopsis eminii, Quinquina, Prunus africana);
- l'élevage est essentiellement constitué de celui de petits bétails (chèvres, porcs, moutons, volailles, lapins, dindons, cobayes, ...);
- <u>-</u> le petit commerce est essentiellement orienté vers l'Ouganda ; ce qui explique l'utilisation locale de la monnaie ougandaise.

4.6. Impact des activités agricoles sur l'environnement

L'agriculture itinérante sur brûlis pratiquée dans la région d'étude, comme partout ailleurs en RDC, est de loin l'activité la plus prédatrice des forêts. La déforestation rapide qui s'ensuit, en constitue le principal impact sur les forêts..

Chapitre 5. Potentiel sur pied de *Prunus africana* dans le Nord Kivu et quota exploitable

Les travaux d'estimation du potentiel de *P. africana* avaient pour but de récolter les informations sur les sites de productions et les stocks de l'espèce *P. africana* en vue de proposer des mesures de gestion rationnelle de cette espèce dans le Nord Kivu. La suite logique des activités conduites se présente comme suit:

- Identification des sites potentiels (forêts naturelles) à sonder ;
- collecte des données

5.1. Identification des sites de production à sonder dans le Nord Kivu

A la suite de l'atelier de formation sur les techniques d'inventaire d'aménagement de *Prunus africana* conduite au Jardin Botanique de Kisantu, le groupe KAHINDO a envoyé sur le terrain une mission composée des ingénieurs et techniciens en vue de la prospection et d'identification des sites de production sécurisés. La mission avait pour but d'identifié les sites de production sécurisés et de sensibiliser les populations attenantes à la campagne d'inventaire en vue. Trois principaux sites de production sécurisés ont ainsi été retenus dont : Bapiri, Baswagha, et Walikalé. Dans chaque site, la mission a rencontré les chefs coutumiers, les chefs terriens, les délégués des communautés locales et les faiseurs locaux d'opinion pour expliquer l'objet de la mission et l'objet de la reprise des inventaires de Prunus dans le Nord Kivu. La mission édifiait les communautés locales sur les points suivants :

- l'objet de la mission d'inventaire de *Prunus africana* ;
- la CITES (un bref aperçu) et la cause de la suspension du commerce de l'écorce de Prunus africana;
- l'intérêt socio-économique de *Prunus africana* et la place de ce dernier dans le commerce international
- l'intérêt de la conservation de *Prunus africana* eu égard à ses vertus médicinales ;
- l'utilisation de l'écorce et des graines de *Prunus africana* ;
- la nécessité de domestiquer l'espèce ;
- la méthodologie d'inventaire sur le terrain ;
- la nécessité de l'appropriation, dès la phase des inventaires, du projet *Prunus africana* par les communautés locales au rapport des retombées économiques attendues pour elles;

- méthode d'exploitation durable de *Prunus africana*.

La figure 1 illustre la carte d'occupation des sols des premiers sites identifiés dans le territoire de Walikale. Un total de sept sites de production ou collines ont été identifiés à savoir : Buhimba kasopo, Kano, Kamulu, Kateku, Kalongué kasopo, Ngambi et Runguta.

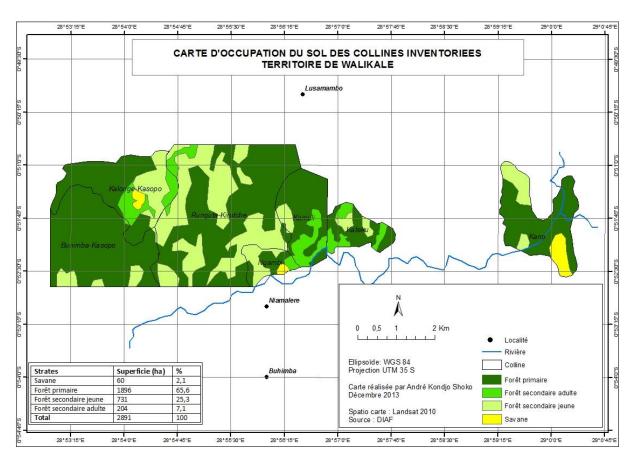


Figure 1 : carte d'occupation des sols des sites à sonder dans le territoire de Walikalé, nord Kivu.

5.3. Collecte des données

5.3.1. Acquisition du matériel et logistique

Le matériel technique nécessaire à la réalisation des inventaires (boussoles,GPS, rubans...) n'ont pu être trouvé sur les marchés locaux. Il a été loué auprès de tierces. Une importante quantité de ration constituée du riz, haricots, farine de maïs, farine de manioc, du sucre, thé, biscuits, sel, savon de lessive et de toilette a été achetée au marché de Beni. Les ustensiles de cuisine (casseroles, couteaux, cuillères, fourchettes), le matériel de camping (tentes, bâches, sacs de couchage et matelas) et la trousse médicale de premiers soins ont été achetés sur le marché de Butembo.

En ce qui concerne le matériel roulant, deux Jeep Toyota Land Cruiser hard top ont été, en permanence, mises à la disposition de l'équipe pour assurer la mobilité nécessaire à l'exécution de l'inventaire.

5.3.3. Méthode d'inventaire de Prunus africana

La méthode utilisée dans les inventaires de *Prunus africana* dans le Nord-Kivu, est une combinaison de la méthode traditionnelle d'inventaire d'aménagement à celle dite ACS (Adaptive Clusters Sampling) ou échantillonnage adapté aux grappes.

5.3.3.1. Dispositif

Dispositif pour la méthode traditionnelle

Le dispositif de sondage utilisé est illustré dans la figure 2. Tous les layons de comptage sont orientés Est – Ouest.

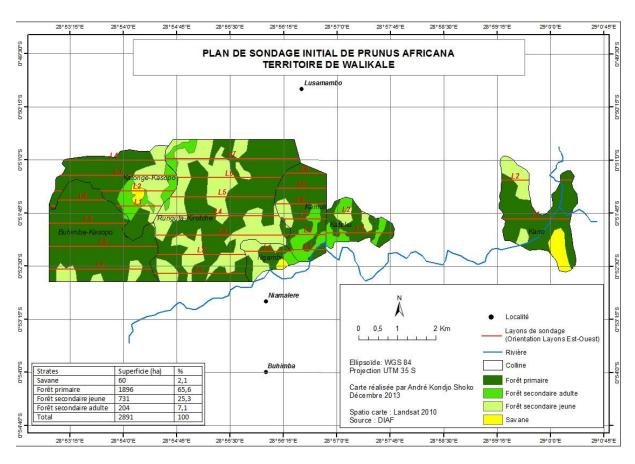


Figure 2 : Dispositif de sondage pour l'inventaire de *Prunus africana* dans le territoire de Walikale dans le nord Kivu.

La technique utilisée pour le dispositif traditionnel est basée sur un sondage systématique à 1 degré où l'unité statistique est la parcelle de 0,5 ha (250 m x 20 m). C'est également un sondage stratifié à posteriori, c'est-à-dire que les échantillons (parcelles ou placettes) sont distribués systématiquement sur toute la population et non par strate.

Les parcelles sont contigües le long des layons qui sont parallèles et équidistants.

Dispositif pour la méthode ACS

Soit y, la valeur de la variable dans l'unité d'échantillon (parcelle ou placette) de l'échantillonnage traditionnel et C, la condition (nombre de tige par exemple) pour provoquer l'échantillonnage adapté.

Si y> C dans une unité de l'échantillon initial, les unités supplémentaires sont ajoutées dans son entourage. Si d'autres unités de cet entourage ont également y>C, le processus continue jusqu'à obtenir un réseau dont la limite se situe aux unités qui ont y<C. Si beaucoup d'unités satisfont la condition alors l'échantillon aura beaucoup d'unité dans la population. Pour l'inventaire exécuté dans le Nord-Kivu, les unités à ajouter ont consisté aux parcelles circulaires de 0,2 ha, soit un rayon de 25,3 m. Ces parcelles étaient ajoutées la condition c a été fixée à 4 tiges. Ce qui signifie que les parcelles circulaires ont été ajoutées uniquement pour les parcelles rectangulaires qui avaient au moins de 4 tiges de *Prunus africana*. Aussi, nous avons limité le processus à deux parcelles circulaires, l'une située à 100 m à gauche de la parcelle traditionnelle (rectangulaire) et l'autre située à droite de cette même parcelle et à la même distance. Le processus s'arrêtait là quelle que soit le nombre de tiges trouvés dans les parcelles circulaires.

La méthode ACS a pour avantages :

- d'avoir une idée sur la taille des agrégats ;
- de fournir beaucoup plus d'informations.

Elle a comme inconvénients:

- la difficulté à déterminer le taux de sondage au départ des inventaires ;
- le volume élevé de travail à effectuer autant que le coût élevé y relatif.

Les parcelles ACS ont gardé la même configuration partout, parcelles circulaires de 0,2 ha.

5.3.3.5. Mise en œuvre du plan de sondage

La mise en œuvre du plan de sondage a consisté à effectuer les opérations suivantes :

- Le layonnage,
- Le comptage;
- ___Les études des arbres.

_

Layonnage

L'opération de layonnage qui matérialise le plan de sondage sur le terrain, a consisté à l'ouverture des layons de base et de comptage, au chaînage et au pointage de jalons.

En effet, après avoir choisi les points de départ repérables (bornes du parc ou un point au sommet des collines) et déterminé l'azimut, les layons de base et de comptage étaient matérialisés sur le terrain au travers de l'ouverture de la végétation et du chaînage de la distance parcourue.

L'ouverture du layon consiste à tracer sur le terrain sur une largeur d'environ 1,5 mètre ce layon préalablement dessiné sur le plan de sondage en suivant une direction magnétique (azimut) bien déterminé. L'axe du layon qui devrait être matérialisé par un alignement des jalons à une distance d'environ 10 mètres et les jalons de distances l'a été simplement fait avec les piquets de distances en raison de la fragilité du milieu qui empêchait les équipes à couper beaucoup de jeunes tiges. De part et d'autre de cet axe, il y a dégagement de la strate herbacée et des gaulis de moins de 5 centimètres de diamètre.

Le chaînage consiste à :

- Mesurer les distances horizontales et les corriger après lecture des pentes selon la table de correction des pentes située en annexes ;
- Décrire les détails topographiques, hydrographiques et les types de végétation traversés par le layon;
- Délimiter les parcelles échantillons tous les 250 mètres en plaçant les piquets mentionnant leur numéro d'ordre ;
- Eventuellement positionner, à partir de la borne 125 mètres des parcelles rectangulaires et perpendiculairement, les centres des parcelles circulaires de

0,5 ha (rayon = 25,3 m) en cas de leur ajout dans les conditions qui seront décrites dans les sections développées plus loin.

Le matériel utilisé était constitué de GPS, boussole, chaines d'arpenteur et machettes.

Comptage

Le comptage a consisté à :

- l'identification des tiges de *Prunus africana*, même celles ayant un diamètre inférieur à 10 cm ;
- la mensuration de la circonférence de la tige (CHP) à hauteur de poitrine (1,30 m) au dessus du sol;
- l'appréciation de l'état du houppier et de l'état de santé de l'arbre (V = arbre vivant ; D = arbre dépérissant ; M = arbre mort) ;
- au prélèvement des coordonnées et de l'altitude à l'aide de GPS.

Toutes ces informations ont été consignées dans les fiches appropriées dénommées "Fiches de Comptage".

Ressources humaines mobilisées

Trois équipes de production chargées à la fois du layonnage et de comptage ont été constituées. Elles comprenaient, chacune, un chef d'équipe (1), un boussolier (1), un coupeur de jalons (1), des chaîneurs (2), les compteurs botanistes (3), des mensurateurs (3) et des machetteurs (4), des porteurs d'eau (2) et l'équipe d'intendance constitué d'un chef logistique, d'un cuisinier, d'un aide cuisinier et d'un ravitailleur. Soit au total 18 personnels par équipe et donc 57 pour l'ensemble constitué de techniciens et manœuvres. Chaque équipe était en sus accompagné sur le terrain par deux policiers et deux militaires pour des besoin de sécurité..

5.5. Résultats des inventaires

5.5.1. Chronogramme des opérations

Les travaux d'inventaires se sont déroulés dans la zone de Walikale entre le 25 Octobre et le 20 Novembre 2013, y compris les temps de déplacement.

5.5.2. Superficie sondée et taux de sondage

Le tableau 1 présente pour la zone de Walikale, les sept collines prospectées avec pour chacune le nombre de layons ouverts et comptés, le nombre de parcelles, et les superficies

correspondantes. Un total de sept (07) collines ont été parcourues. La superficie sondée dans l'ensemble des 7 collines s'élève à 58 ha..

Tableau 1: Paramètres de sondage par colline

Colline	Nombre de layons	Nombre de parcelles rectangulaires	Nombre de parcelles circulaires	Superficie sondée (ha)
Buhimba Kasopo	4	21	4	11,3
Kano	2	12	7	6,9
Kamuli	4	11	0	5,5
Kateku	2	6	0	3
Kalongué Kasopo	4	14	6	8,2
Ngambi	1	4	0	2
Runguta	7	39	8	21,1
Total	24	82	21	58

La figure 1b en annexe présente la zone de Walikale dans sa globalité avec le dispositif de sondage de départ.

Le tableau 2 présente pour chaque colline inventoriée, la superficie de la forêt utile, la superficie sondée ainsi que le taux de sondage réalisé. Le taux de sondage moyen réalisé est de 2,05%.

Tableau 2 : Taux de sondage réalisé

Colline	Superficie utile	Superficie	Taux de
	(ha)	sondée (ha)	sondage (%)

Colline	Superficie utile (ha)	Superficie sondée (ha)	Taux de sondage (%)
Buhimba	548,5	11,3	2,06
Kano	339,9	6,9	2,03
Kamuli	268,3	5,5	2,05
Kateku	150,0	3	2,00
Kalongué	394,2	8,2	2,08
Ngambi	99,5	2	2,01
Runguta	1004,8	21,1	2,10
Total	2805,2	58	2,05

5.5.3. Densité des tiges de Prunus africana

Un total de 382 de Prunus africana a été recensé par les équipes dans les 58 ha de forêt prospectées. Cent soixante une (161) sont des tiges de diamètre < 10 cm, et constituent 48,7% de toutes les tiges. Cent quatre-vingt seize (196) tiges de diamètre ≥ 10 cm ont été relevées. Le tableau 3 en annexe présente pour chaque colline les tiges de *Prunus* recensées par layons et parcelle. Lorsqu'une tige est mentionnée, on précise son diamètre à hauteur de poitrine (DHP), son état de santé, la qualité d'écorçage pratiquée au cas où la tige a été déjà exploitée, et l'état du houppier (nombre de branches sèches). Lorsqu'aucune tige n'a été retrouvée dans une parcelle, l'information se limite uniquement au niveau du numéro de la parcelle. Celle-ci peut être une parcelle rectangulaire (P) ou alors une parcelle circulaire (ACS). On constate que les équipes ont passé beaucoup de temps en essayant de compter en détail les jeunes tiges de Prunus de diamètre < 10 cm. La formation dispensée avait précisé que l'on pouvait pour les sauvageons, donner une appréciation de leur abondance par une échelle allant de 1 à 5, telle que 1 soit attribué à la parcelle ayant très peu de jeunes tiges et 5 la valeur maximale attribuée à la parcelle la plus riche en jeunes pousses de Prunus. Des corrections devront être apportées pour la suite des travaux dans d'autres sites de production, de manière à optimiser le travail.

5.5.3.1. Tiges vivantes

Par tige vivante il faut entendre celle qui présente une bonne physionomie générale au point de vue santé, avec des branches et feuilles non sèches. Sur les 196 tiges de diamètre ≥ 10 cm recensées dans l'échantillon, 183 sont vivantes (tableau 4) représentant 93,36% du total des tiges. Les tiges exploitables vivantes, c'est-à-dire celles ayant un diamètre à hauteur de poitrine au moins égal à 30 cm sont au nombre 113, représentant 61,7% du total des tiges vivantes.

Tableau 4 : Distribution des tiges vivantes recensées par classes de diamètre et par colline d'inventaire.

	CI10-20	CI20-30	CI30-40	CI40-50	CI50-60	CI60-70	CI70-80	CI80-90	CI90-100	CI>100	loitables	exploitables	Total
											Tiges non exploitables	Tiges exp	
Buhimba													
kasopo	11	8	7	5	4	3	1	2			19	22	41
Kano	11	3	3	3	2		1	2	2		14	13	27
Kamuli		1	2	1	1		1	3	1		1	9	10
Kateku Kolongué	2				1					1	2	2	4
Kasopo	4	8	4	15	6	8	3	2	2	2	12	42	54
Ngambi	1			2			1				1	3	4
Runguta	16	5	8	5	2	3	2	1	1		21	22	43
Total général	45	25	24	31	16	14	9	10	6	3	70	113	183

Les figures 3a, 3b, 3c, 3d, 3e, 3f et 3g illustrent les allures diamétriques des tiges vivantes de Prunus recensée dans les cinq collines de la zone de Walikale dans le Nord Kivu. Seules les tiges vivantes de diamètres ≥ 10 cm sont représentées. Les figures présentées peuvent être regroupées en trois groupes, compte tenu du tempérament héliophile de l'espèce Prunus africana. Le premier groupe est constitué des milieux qui ont probablement connu l'exploitation ou alors qui ont été perturbés, au vu de l'importante régénération observée à travers le nombre élevé de tiges dans les basses classes de diamètres (classes 10 − 40 cm). Ce groupe comprend les collines de Buhimba, Kano et de Runguta. Le second groupe est constitué des milieux présentant une allure irrégulière, avec une absence de tiges dans certaines classes de diamètre. C'est le groupe des collines Kamu, Katéku et Ngambi qui ont probablement connu une exploitation dans le passé. Dans ce groupe, l'exploitation devrait être interdite sur les collines de Katéku et Ngambi qui présentent une allure très irrégulières avec notamment l'absence de tiges dans 70% des classes de diamètre définies. Le troisième et dernier groupe est constitué d'une seule colline jugée peu perturbée, la colline de Kalongué kasopo. La concentration des individus dans les classes intermédiaires caractérise le caractère peu perturbé des espèces de lumière dont *Prunus* fait partie.

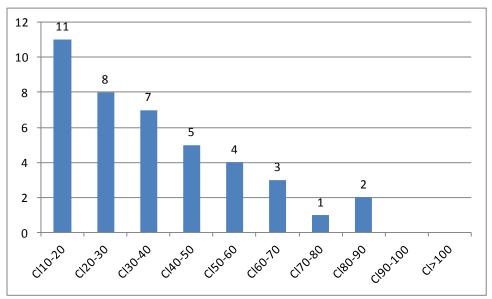


Figure 3a: Distribution des tiges vivantes de *Prunus africana* recensées dans l'échantillon par classe de diamètre sur la colline de Buhimba dans le Nord Kivu.

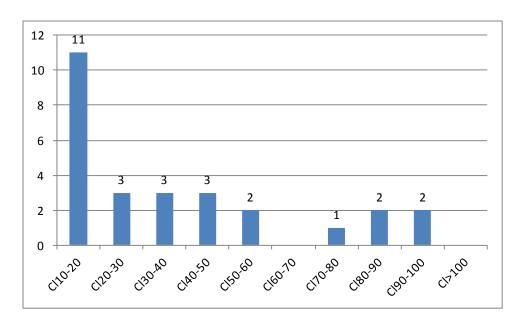


Figure 3b: Distribution des tiges vivantes de *Prunus africana* recensées dans l'échantillon par classe de diamètre sur la colline de Kano dans le Nord Kivu.

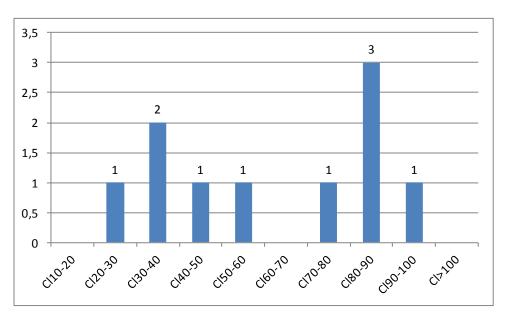


Figure 3c: Distribution des tiges vivantes de *Prunus africana* recensées dans l'échantillon par classe de diamètre sur la colline de Kamuli dans le Nord Kivu.

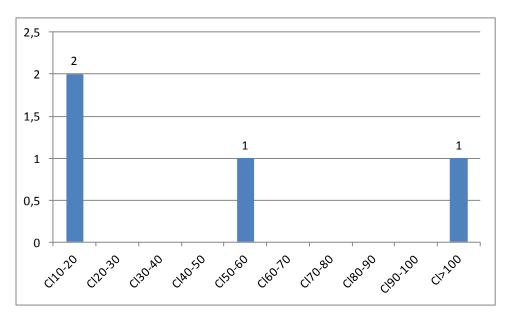


Figure 3d: Distribution des tiges vivantes de *Prunus africana* recensées dans l'échantillon par classe de diamètre sur la colline de Katéku dans le Nord Kivu.

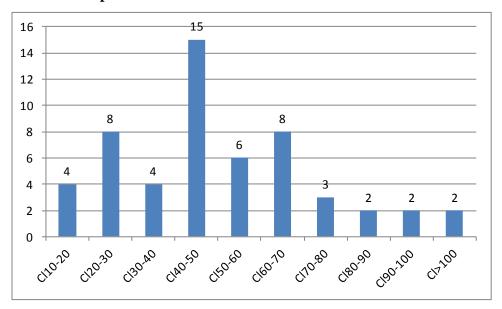


Figure 3e: Distribution des tiges vivantes de *Prunus africana* recensées dans l'échantillon par classe de diamètre sur la colline de Kalongué kasopo dans le Nord Kivu.

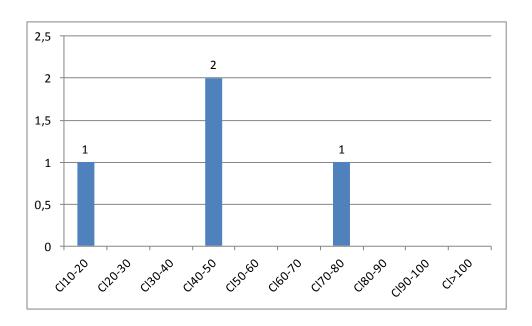


Figure 3f: Distribution des tiges vivantes de *Prunus africana* recensées dans l'échantillon par classe de diamètre sur la colline de Ngambi dans le Nord Kivu

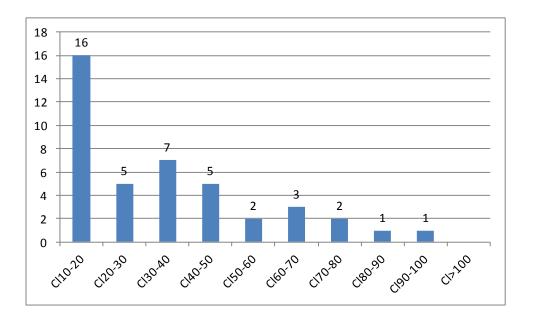


Figure 3g: Distribution des tiges vivantes de *Prunus africana* recensées dans l'échantillon par classe de diamètre sur la colline de Runguta dans le Nord Kivu

Le tableau 5 présente la densité des tiges vivantes recensées. La densité moyenne des tiges vivantes est de 3,2 tiges/ha dans les cinq collines. La densité la plus forte se trouve à Kalongué Kasopo avec 6,6 tiges/ha. De manière globale, la densité moyenne obtenue est comparable à celle trouvée en 2011 dans le site de Ibathaama (3,01 tiges/ha) mais reste toujours faible comparée à celles trouvées au Cameroun (Akoa et al. 2010, 2011a, b). Elle est cependant plus forte que la densité de 2,86 tiges/ha obtenue avec la même méthode au Burundi (Betti et al. 2013). Les tiges exploitables sont représentées avec une densité moyenne de 1,9tiges/ha dans l'ensemble des cinq collines.

Tableau 5 : Distribution de la densité des tiges vivantes par classes de diamètre et par colline

nuli eku ongué	1,6 0 0,7	0,4 0,2 0	0,4 0,4 0	0,4 0,2 0	0,3 0,2 0,3	0 0 0	0,2	0,3 0,5 0	0,3 0,2 0	0 0,3	1,7 2,0,2 0,7	1,9 1,6 0,7	3,6 3,9 1,8 1,3
Kano Kamuli Kateku	0	0,2	0,4	0,2	0,2	0	0,2	0,5	0,2	0	0,2	1,6	1,8
Kolongué Kasopo	0,5		0,5	•	-		0,4					5,1	6,6
Ngambi Runguta Total général	-	0,2	0 0,4 0,4	•	0 0,1 0.3	0 0,1 0.2	•	0 0 0 2	0 0 0 1	0 0 0 1	0,5 1 1,2	1,5 1 1,9	2 2 3,2

5.5.3.2. Tiges dépérissantes ou mortes

Les tiges dépérissantes ou mortes sont celles qui soit présentent beaucoup de branches sèches, soit encore sont totalement mortes.. La densité moyenne des tiges dépérissantes ou mortes est de 0,26 tiges/ha. Cette densité est plus faible que celles trouvées dans Nord ouest (0,5 tiges/ha), le Mont Cameroun (0,3 tiges/ha) au Cameroun (Akoa et al. 2010, 2011a), dans Adamaoua (3,69 tiges/ha) au Cameroun (Akoa et al. 2011b).

5.5.4. Effectifs totaux des tiges vivantes

Les effectifs totaux représentent pour chaque zone, le produit de la densité des tiges par la superficie estimée de cette zone. Le tableau 6 présente les effectifs totaux des tiges vivantes de *Prunus africana* par classe de diamètre dans les cinq collines prospectées. Un total de 6 676 tiges vivantes de *Prunus africana* a été estimé pour les cinq collines prospectées. Si l'on considère 30 cm comme le diamètre minimum d'exploitabilité des tiges de *P. africana* et si l'on élimine la colline de Katéku dans laquelle *Prunus* éprouve beaucoup de problèmes de survie, on peut estimer le nombre total de tiges exploitable à 4 240 – 100 = 4 140 tiges.

Tableau 6. Distribution des effectifs totaux des tiges vivantes dans les différentes collines inventoriées

	CI10-20	CI20-30	CI30-40	CI40-50	CI50-60	CI60-70	CI70-80	CI80-90	CI90-100	CI>100	ables	ables	Total
	CI1	CI2	CI3	CI4	CIS	9IO	CI7	CI8	0610	Ô	Tiges non exploitables	Tiges exploitables	L
Buhimba													
kasopo	534	388	340	243	194	146	49	97	0	0	922	1068	1990
Kano	542	148	148	148	99	0	49	99	99	0	690	640	1330
Kamuli	0	49	98	49	49	0	49	146	49	0	49	439	488
Kateku	100	0	0	0	50	0	0	0	0	50	100	100	200
Kolongué													
Kasopo	192	385	192	721	288	385	144	96	96	96	577	2019	2596
Ngambi	50	0	0	100	0	0	50	0	0	0	50	149	199
Runguta	762	238	381	238	95	143	95	48	48	0	1000	1048	2048
Total général	2176	1209	1161	1499	774	677	435	484	290	145	3386	5465	8851

5.5.6. Estimation du quota annuel d'écorce à Prélever

5.5.6.1. Productivité d'une tige exploitable de P. africana

L'étude portant sur la productivité moyenne d'une tige exploitable de *Prunus africana* dans la zone de Walikale est en cours. Pour le moment, , nous avons estimé la productivité moyenne d'une tige exploitable de *Prunus africana* dans le Nord Kivu selon la valeur moyenne de productivité trouvée dans l'Adamaoua au Cameroun (Betti et Ambara 2013) et qui est de 138,64 kg d'écorce fraîche. Cette valeur représente la quantité totale d'écorce fraîche à

prélever à partir de la hauteur de poitrine d'un homme jusqu'à le première grosse branche en cernant totalement la tige.

L'écorce de *P. africana* est exportée en masse de matière sèche. Le passage de la masse fraîche à la masse sèche se fait en appliquant le coefficient de 50%, soit 69,32 kg de matière sèche.

Pour une exploitable soutenue, il est conseillé de récolter les deux quarts opposés du tronc, laisser l'arbre se reposer pour permettre à l'écorce prélevée de régénérer et permettre la circulation de la sève, et repasser après 6 ans sur le même arbre pour prélever les deux quarts opposés qui étaient resté lors du premier passage. Les deux quart opposés à prélever dans une rotation représentent la moitié de l'écorce, soit 34,66 kg de matière sèche. Nous retenons donc que pour permettre une exploitation durable de *P. africana* dans le Nord Kivu, il faut prélever sous réserve des données plus approfondies sur le cubage des arbres en cours, estimer la quantité d'écorce sèche par arbre à 34,66 kg.

5.5.6.2. Effectifs totaux à prélever sur une base rationnelle

Par effectif à prélever sur une base rationnelle il faut entendre uniquement la somme des tiges vivantes ayant atteint ou dépassé le diamètre minimum d'exploitabilité (ici 30 cm). L'effectif total des tiges de *P. africana* à prélever sur une base rationnelle dans le territoire de Walikalé Walikaleest estimé à 5 465 tiges.

5.5.6.3. Quota annuel d'écorce sèche de *P. africana* à autoriser sur une base rationnelle dans la zone de Walikale au Nord Kivu

Le quota annuel (Qa) désigne le produit des effectifs à prélever sur une base rationnelle (Tr) avec la productivité moyenne d'une tige exploitable (Ms) :

 $Qa = Tr \times Ms$.

Qa et Ms sont exprimés en kilogramme d'écorce sèche alors que Tr désigne le nombre de tiges. Le tableau 7 présente les résultats obtenus. Le quota de *P. africana* à prélever dans le territoire de Walikalé sur une base soutenue est estimé 31,5 tonnes d'écorce sèche par an suivant une demi rotation de 6 ans, soit une rotation de 12 ans. Si l'on supprime les deux collines de Katéku et Ngambi pour lesquelles l'espèce éprouve d'énormes difficultés de reconstitution, ce quota peut être ramené à 30,12 tonnes d'écorce sèche par an.

Tableau 7 : Simulation du quota annuel en masse d'écorce sèche

Colline	Surface sondée (ha)	Surface totale	Effectifs des tiges exploitables	en masse	Dmi rotation (ans)	Quota annuel_masse sèche (kg)
Buhimba kasopo	11,3	548,5	1068,0	34,7	6,0	6169,3
Kano	6,9	339,9	640,4	34,7	6,0	3699,3
Kamuli	5,5	268,3	439,0	34,7	6,0	2536,1
Kateku	3	150,0	100,0	34,7	6,0	577,7
Kolongué Kasopo	8,2	394,2	2019,2	34,7	6,0	11664,4
Ngambi	2	99,5	149,3	34,7	6,0	862,2
Runguta	21,1	1004,8	1047,6	34,7	6,0	6051,7
Total général	58	2805,2	5465,4	34,7	6,0	31571,6

5.5.6.4. Parcellaire

Le parcellaire proposé pour l'exploitation des 30,12 tonnes est illustré dans la figure 4. Les 30,12 tonnes d'écorce seront récoltés selon la programmation suivante :

- Année 1 : Bloc 1 : 342 ha;
- Année 2 : Bloc 2 : 504 ha;
- Année 3 : Bloc 3 : 510 ha;
- Année 4 : Bloc 4 : 509 ha ;
- Année 5 : Bloc 5 : 517 ha;
- Année 6 : Bloc 6 : 517 ha

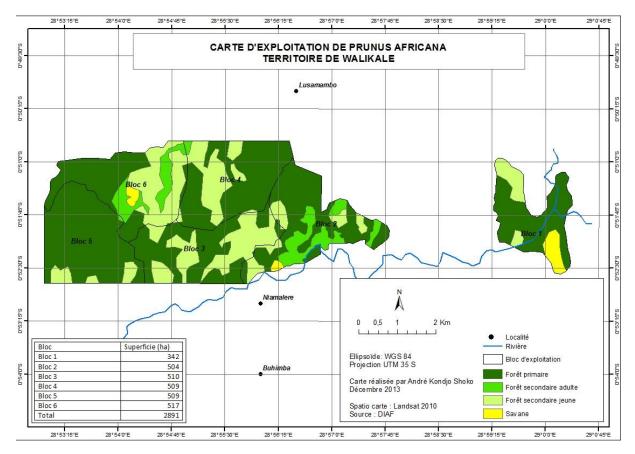


Figure 4 : Délimitation des parcelles d'exploitation annuelle de *Prunus africana* dans le territoire de Walikale, Nord Kivu.

Conclusion et recommandations

Compte tenu des retards relevés dans la mise en œuvre du projet « Avis de Commerce Non Préjudiciable sur *Prunus africana* (Hook.f.) Kalman dans le Nord et Sud Kivu, République Démocratique du Congo (RDC) », l'ICCN a opté pour l'approche faire-faire en confiant les missions de réalisation des inventaires aux secteur privé. L'atelier de formation organisée du 28 septembre au 02 Octobre 2013 dans le jardin botanique de Kisantu a permis à l'ICCN, agence d'exécution du projet de former le personnel des secteurs publics et privés sur les techniques modernes d'inventaire d'aménagement de *Prunus africana*. Au lendemain de la formation, une société privée, le groupe KAHINDO MUVUNGA, soucieux de la gestion durable de l'espèce, a mobilisé son personnel pour mettre en pratique les enseignements dispensés par l'ICCN à Kisantu. Les résultats présentés dans ce rapport constituent les premiers résultats de cette mission d'inventaire, réalisé dans cinq collines basées dans la zone de Walikale dans le Nord Kivu. Sur les sept collines parcourues par les inventaires, deux ont été jugées non propice à l'exploitation des écorces de *Prunus africana*, du fait notamment de

l'allure très irrégulière de spectre diamétrique. Il s'agit de la colline de Katéku et de celle de Ngambi, vaste d'environ de 150 ha et 99,5 ha. La récolte de l'espèce est par contre autorisable sur les collines de Buhimba, Kano, Kamuli, Kalongue kasopo, et Runguta. Il sera possible de récolter sur ces collines, un total de 30,12 tonnes d'écorces sèches de *Prunus africana* selon une rotation de 12 ans pour des besoins de gestion durable. Cette exploitation ne sera possible qu'après avoir respecté certaines mesures de gestion en rapport notamment avec le parcellaire, et les inventaires d'exploitation...

De manière plus précise, les mesures d'aménagement à compléter pour s'assurer que l'exploitation des écorces ne soit pas préjudiciable à la survie des tiges de *P. africana* comporte entre autres :

- La sensibilisation continue des autorités et communautés locales sur l'importance socio-économique de *P. africana*;
- La poursuite des inventaires dans les autres zones à Prunus plus ou moins sécurisées dans le Nord Kivu ;
- La conduite des études d'arbres plus complètes qui permettent d'apprécier réellement la productivité moyenne d'une tige exploitable de *P. africana* dans le Nord Kivu;
- La cartographie détaillée des sites prospectés ;
- Le développement d'un parcellaire approprié des zones déjà prospectées en montrant clairement les limites des assiettes annuelles d'exploitation et les quotas correspondant par forêt/clans;
- La conduite des inventaires systématiques (ou d'exploitation) dans chacune des assiettes annuelles délimitées ;
- La récolte des écorces sur les tiges ayant au moins 30 cm de diamètre à hauteur de poitrine ;
- Le prélèvement des deux quarts opposés de chaque tige entre le niveau de hauteur de poitrine et le point d'insertion de la première grosse branche ;
- Le respect d'une rotation de 6 ans entre les récoltes ;
- La mise sur pied d'un système de contrôle et de traçabilité efficace des exploitations qui seront faites ;
- La poursuite des recherches sur la biologie et l'écologie de *P. africana*.

Fait à Kinshasa, le 06 décembre 2013

Pour l'Institut Congolais pour la Conservation de la Nature

Pasteur Dr. Cosma WILUNGULA BALONGELWA Directeur Général

Références bibliographiques

- **Kibungu Kembelo 2008** Situation de *Prunus africana* en République Démocratique du Congo . Atelier sur la mise en œuvre des recommandations sur l'étude du Commerce Important de Prunus africana , Naiwasha , Kenya, 8 11 Septembre 2008.
- Akoa A., Betti J.L., Ewusi Njombe B., Mbarga N., Akagou Zedong H.C., Fonkoua C., Essomba E.R., & Nkouna ABIA C. 2010. Preliminary report on sustainable harvesting of *Prunus africana* (Rosaceae) in the North west region of Cameroon. Report prepared for the National Forestry Development Agency (ANAFOR), the Cameroon CITES Scientific Authority for flora, in the frame of the project "Nondetriment findings for *Prunus africana* (Hook.f.) Kalman in Cameroon".
- Akoa A., Betti J-L., Ewusi Njombe B., Mbarga N., Akagou Zedong H.C., Fonkoua C., Mala A. W., Nkouna Abia C. 2011a. Preliminary report on sustainable harvesting of *Prunus africana* (Rosaceae) in the mount Cameroon. Report for the National Forestry Development Agency (ANAFOR), Cameroon's CITES Scientific Authority for flora, Project "Non-detriment findings for *Prunus africana* in Cameroon. 24 p
- Akoa A., Betti J-L., Bilong P., Bekolo Bekolo, Ewusi Njombe B., Mbarga N., Akagou Zedong H.C., Fonkoua C., Nkouna Abia C. 2011b. Preliminary report on sustainable harvesting of *Prunus africana* (Rosaceae) in the mount Tchabal gang daba and mount Tchabal Mbabo in Adamaoua region, Cameroon. Report for the National Forestry Development Agency (ANAFOR), Cameroon's CITES Scientific Authority for flora, Project "Non-detriment findings for *Prunus africana* in Cameroon. 24 p
- Betti J. L. 2008 Non-Detriment Findings Report on Prunus africana (Rosaceae) in Cameroon.

 Report prepared for the International Expert Workshop on Non-Detriment Findings,

 Mexico, November 17th-22th, 2008. 52 p.

 www.conabio.gob.mx/.../TallerNDF/...CS9%20Prunus/WG1-CS9-S.pdf.
- Betti J.L, Ambara J. 2013. Mass of *Prunus africana* stem barks on Tchabal mbabo and Tchabal Gang Daba Mountain Forests, Cameroon. *African Journal of Environmental Science and Technology* Vol 7: 204 221
- Betti J. L., Feruzi M., Rushemeza J., Rurantije A., Nziguiyimpa L., Ahishakiye J.,
 Mamariyo, Buvyiruke E., Ndayishimiye J.C., Hakizimana C., Bantegeyahaga E.
 2013. Exploitable stock of *Prunus africana* Stems in the Teza Forest, Kibira National

Park, Burundi, *International journal of agriculture innovations and research*, 3 (2); 317-326.

Cunningham, A.B. et Mbenkum, F.T. 1993. Sustainability of harvesting *Prunus africana* bark in Cameroon: A medicinal plant in international trade. UNESCO, Paris, France.

Annexe

Tableau 3: Tiges de Prunus recensées dans les inventaires conduits dans la zone de Bapiri au Nord Kivu.

-					DHP	Epaisseur		Qualité
N°d'ordre	N°_Tige_Carnet		Layon	Parcelle	(cm)	(mm)	Santé	écorçage
		Kolongué						
1	. 0	Kasopo	L1	P1	0			
_		Kolongué						_
2	. 1	Kasopo	L1	P2	98,7	25	V	В
_	_	Kolongué						
3	2	Kasopo	L1	Р3	8,9		V	Α
	_	Kolongué						_
4	. 3	Kasopo	L1	Р3	64,0	20	V	В
_		Kolongué						
5	4	Kasopo	L1	Р3	13,7		V	Α
	_	Kolongué						
6	5	Kasopo	L1	P4	27,9	12	V	Α
		Kolongué						
7	6	Kasopo	L1	P4	7,3		V	Α
		Kolongué						
8	7	Kasopo	L2	P1	89,2	13	V	В
		Kolongué						
9	8	Kasopo	L2	P2	79,6	18	V	Α
		Kolongué						
10	9	Kasopo	L2	P4	49,4	18	V	В
		Kolongué						
11	. 10	Kasopo	L2	P4	86,0	20	V	Α
		Kolongué						
12	. 11	Kasopo	L2	P4	44,3	15	V	Α
		Kolongué						
13	12	Kasopo	L2	P4	41,4		V	В
		Kolongué						
14	13	Kasopo	L2	P5	63,7	11	V	В
		Kolongué						
15	14	Kasopo	L2	P5	31,8	22	V	Α
		Kolongué						
16	15	Kasopo	L4	P2	69,1		D	Α
		Kolongué						
17	16	Kasopo	L4	P2	61,5		V	В
		Kolongué						
18	17	Kasopo	L4	P2	65,3		V	В
		Kolongué						
19	18	Kasopo	L4	Р3	15,9		V	Α
		Kolongué						
20	19	Kasopo	L4	P4	17,5	6	V	Α
21	. 20	Kolongué	L4	P4	22,3	7	V	Α

		- "			DHP	Epaisseur		Qualité
N°d'ordre	N°_Tige_Carnet		Layon	Parcelle	(cm)	(mm)	Santé	écorçage
		Kasopo						
		Kolongué						_
22	21	Kasopo	L4	P4	17,5	8	V	Α
		Kolongué						
23	22	Kasopo	L4	P4	59,2	15	M	
2.4	22	Kolongué		D.4	2.2		.,	•
24	23	Kasopo	L4	P4	3,2		V	Α
25	24	Kolongué	1.4	P4	г 7		V	۸
25	24	Kasopo Kolongué	L4	P4	5,7		V	Α
26	25	Kolongue Kasopo	L4	P4	8,9		V	Α
20	23	Kolongué	L4	14	0,5		V	^
27	26	Kasopo	L4	P4	64,6	24	V	В
21	20	Kolongué	LT		04,0	24	V	Ь
28	27	Kasopo	L4	ACS4G	65,3	10	V	Α
20	2,	Kolongué		710510	03,3	10	•	,,
29	28	Kasopo	L4	ACS4D	30,9	6	V	Α
		Kolongué				_		
30	29	Kasopo	L4	ACS4D	21,7	4	V	Α
		Kolongué			,			
31	30	Kasopo	L4	P5	63,7		V	Α
		Kolongué			•			
32	31	Kasopo	L4	P5	98,7	40	V	В
		Kolongué						
33	32	Kasopo	L3	P2	28,7	10	V	В
		Kolongué						
34	33	Kasopo	L3	P2	27,1	10	V	Α
		Kolongué						
35	34	Kasopo	L3	P2	47,8	10	V	Α
		Kolongué						
36	35	Kasopo	L3	P2	44,6	13	V	В
		Kolongué						
37	36	Kasopo	L3	P2	49,4	12	V	Α
		Kolongué						_
38	37	Kasopo	L3	P2	44,6	12	V	Α
20	20	Kolongué	1.2	D2	40.4	4.2	.,	•
39	38	Kasopo	L3	P2	49,4	13	V	Α
40	20	Kolongué	1.2	D2	76.4	4.4	.,	•
40	39	Kasopo	L3	P2	76,4	14	V	Α
41	40	Kolongué Kasopo	L3	P2	E2 E	12	\/	٨
41	40	Kasopo Kolongué	LO	۲۷	52,5	13	V	Α
42	//1	Kolorigue Kasopo	L3	P2	57,3	12	V	Α
42	41	Kolongué	LJ	1 4	57,5	12	V	11
43	Δ2	Kasopo	L3	P2	49,4	11	V	В
73	72	Kolongué	_3		13,4	11	•	_
44	43	Kasopo	L3	P2	44,6	11	V	Α
45		Kolongué	L3	P2	49,4			В

M1041 =1	NI ⁰ T: C	Callier -	1	D==== 11	DHP	Epaisseur	Ce! '	Qualité
N°d'ordre	N°_Tige_Carnet		Layon	Parcelle	(cm)	(mm)	sante	écorçage
		Kasopo						
46	45	Kolongué	1.2	D2	20.2	12	\ <i>/</i>	۸
46	45	Kasopo Kolongué	L3	P2	38,2	12	V	Α
47	16	Kolorigue Kasopo	L3	P2	47,8	15	17	Α
47	40	Kolongué	LS	PZ	47,0	15	V	А
48	17	Kolorigue Kasopo	L3	P2	52,5	12	V	Α
40	47	Kolongué	LS	12	32,3	12	V	^
49	48	Kasopo	L3	P2	35,0	12	V	В
43	40	Kolongué	23	1 2	33,0	12	•	D
50	49	Kasopo	L3	ACS2D	54,1	12	V	В
30	.5	Kolongué	23	710020	3 .,_		•	5
51	50	Kasopo	L3	ACS2D	50,0	14	V	Α
		Kolongué		7.0022	55,5		-	
52	51	Kasopo	L3	ACS2D	25,8	6	V	Α
		Kolongué			,			
53	52	Kasopo	L3	ACS2D	114,6	13	V	В
		Kolongué						
54	53	Kasopo	L3	ACS2G	48,1	11	V	Α
		Kolongué						
55	54	Kasopo	L3	ACS2G	51,0	15	V	Α
		Kolongué						
56	55	Kasopo	L3	ACS2G	41,4	11	V	В
		Kolongué						
57	56	Kasopo	L3	ACS2G	48,1	11	V	Α
		Kolongué						
58	57	Kasopo	L3	ACS2G	62,4	11	V	Α
		Kolongué						
59	58	Kasopo	L3	ACS2G	114,6	11	V	Α
		Kolongué						
60	59	Kasopo	L3	Р3	3,2	20	V	Α
		Kolongué			•••			_
61	60	Kasopo	L3	Р3	29,9	10	V	Α
62	64	Kolongué		5.0	2.0	20		
62	61	Kasopo	L3	Р3	2,9	20	V	Α
C	63	Kolongué	1.2	na	г 1	40	.,	^
63	62	Kasopo	L3	Р3	5,1	40	V	Α
64	62	Kolongué Kasopo	L3	Р3	8,0	F	V	Α
04	05	Kolongué	LS	P3	٥,0	5	V	А
65	64	Kolorigue Kasopo	L3	Р3	20,7	30	V	Α
03	04	Kolongué	LJ	1 3	20,7	30	v	П
66	65	Kolorigue Kasopo	L3	Р3	2,9	20	V	Α
30	03	Kolongué	LJ	1 3	2,3	20	٧	, 1
67	66	Kasopo	L3	Р3	1,6	20	V	В
07	30	Kolongué		. 3	1,0	20	-	-
68	67	Kasopo	L3	Р3	3,2	20	V	Α
69		Kolongué	L3	ACS3G	73,6	18		Α

	A10 == -	o !!!	_		DHP	Epaisseur		Qualité
N°d'ordre	N°_Tige_Carnet		Layon	Parcelle	(cm)	(mm)	Santé	écorçage
		Kasopo						
70	69	Kolongué Kasopo	L3	ACS3D	3,2	6	V	Α
70		-	L1	P5	10,2		V	A
72		•	L1	P5	1,6		V	A
73		Runguta	L1	P5	3,2	16		A
73		Runguta	L1	P6	2,9		V	A
75		Runguta	L1	P6	2,9 4,5		V	A
76		Runguta	L1	P6	4,3 7,3		V	A
70		_	L1 L1	P6	7,3 3,2	0,5		A
77		Runguta	L1 L1	P6	3,2 7,3		V	A
79		Runguta		P6				
80		Runguta	L1		1,3	5,5	V	Α
		Runguta	L1	ACS6G	0,0			
81		J	L1	ACS6D	0,0	F	.,	۸
82		Runguta	L1	P7	24,2		V	A
83		•	L1	P7	7,0		V	A
84		•	L1	P7	1,6	0,5		A
85		Runguta	L1	P8	15,6	10		A
86		•	L1	P8	2,5	8		A
87		Runguta	L1	P8	5,1		V	A
88		Runguta	L1	P8	4,8		V	A
89		Runguta	L1	P8	0,6		V	A
90		Runguta	L1	P8	0,6		V	A
91		Runguta	L1	P8	0,6		V	A
92		•	L1	ACS8D	95,2	31		В
93		•	L1	ACS8D	7,0		V	A
94		•	L1	ACS8G	30,9	11		A
95		Runguta	L1	P9	9,9		V	A
96		Runguta	L1	P9	2,2	_	V	Α
97		ŭ	L1	P9	12,1	3	V	Α
98		Runguta	L1	P9	5,4		V	Α
99		•	L1	ACS9D	4,5		V	Α
100		Runguta	L1	ACS9D	5,4		V	Α
101		•	L1	ACS9D	4,8		V	Α
102		Runguta	L1	ACS9G	2,2	6	V	Α
103		Runguta	L1	P10	3,2		V	Α
104		Runguta	L1	P10	3,8		V	Α
105		Runguta	L1	P10	9,2		V	Α
106		Runguta	L1	P10	3,5		V	Α
107		Runguta	L1	P10	1,9		V	Α
108		Runguta	L1	P10	3,5		V	Α
109		Runguta	L1	P10	4,5		V	Α
110	108	Runguta	L1	P10	1,9		V	Α

					DHP	Epaisseur		Qualité
N°d'ordre	N°_Tige_Carnet	Colline	Layon	Parcelle	(cm)	(mm)	Santé	écorçage
111	109	Runguta	L1	P10	1,3		٧	Α
112	110	Runguta	L1	P10	1,3		V	Α
113	111	Runguta	L1	P10	3,2		V	Α
114	112	Runguta	L1	P10	1,3		V	Α
115	113	Runguta	L1	P10	0,8		V	Α
116	114	Runguta	L1	P10	14,3		V	Α
117	115	Runguta	L1	P10	5,1		V	Α
118	116	Runguta	L3	P2	56,7	60	D	В
119	117	Runguta	L3	Р3	86,0	19	M	D
120	118	Runguta	L3	Р3	47,8	10	V	Α
121	119	Runguta	L3	P4	11,8	10	V	Α
122	120	Runguta	L3	P4	15,6	20	V	Α
123	121	Runguta	L3	P4	13,4	18	V	Α
124	122	Runguta	L3	P4	22,7	35	V	Α
125	123	Runguta	L3	P4	0,7		V	Α
126	124	Runguta	L3	P4	1,0		V	Α
127	125	Runguta	L3	P4	1,3		V	Α
128	126	Runguta	L3	P4	1,3		V	Α
129	127	Runguta	L3	P4	1,3		V	Α
130	128	Runguta	L3	P4	1,6		V	Α
131	129	Runguta	L3	P4	1,6		V	Α
132	130	Runguta	L3	P4	5,7		V	Α
133	131	Runguta	L3	P4	1,3		V	Α
134	132	Runguta	L3	P4	2,0		V	Α
135	133	Runguta	L3	P4	1,6		V	Α
136	134	Runguta	L3	P4	2,9		V	Α
137	135	Runguta	L3	P4	1,6		V	Α
138	136	Runguta	L3	P4	1,6		V	Α
139	137	Runguta	L3	P4	1,6		V	Α
140	138	Runguta	L3	P4	1,6		V	Α
141	139	Runguta	L3	P4	1,6		V	Α
142	140	Runguta	L3	P4	0,5		V	Α
143	141	Runguta	L3	P4	0,5		V	Α
144	142	Runguta	L3	P4	0,5		V	Α
145	143	Runguta	L3	P4	1,8		V	Α
146	144	Runguta	L3	P4	1,8		V	Α
147	145	Runguta	L3	P4	1,8		V	Α
148	146	Runguta	L3	P4	1,9		V	Α
149	147	Runguta	L3	ACS4G	14,3	4	V	Α
150	148	Runguta	L3	ACS4G	36,6	7	V	Α
151	0	Runguta	L3	ACS4D	0,0			
152	0	Runguta	L3	P5	0,0			
153	0	Runguta	L2	P1	0,0			

N°d'ordre N°_Tige_Carnet Colline Layon Parcelle (cm) (mm) San 154 148 Runguta L2 P2 68,5 30 V 155 149 Runguta L2 P2 17,8 12 V 156 150 Runguta L2 P2 24,2 D 157 151 Runguta L2 P3 38,9 V 158 152 Runguta L2 P3 82,8 30 V 159 153 Runguta L2 P3 58,3 4 V 160 154 Runguta L2 P4 79,6 18 V 161 155 Runguta L2 P4 39,5 11 V	té écorçage B B D D A A A A D A A A D A D
155 149 Runguta L2 P2 17,8 12 V 156 150 Runguta L2 P2 24,2 D 157 151 Runguta L2 P3 38,9 V 158 152 Runguta L2 P3 82,8 30 V 159 153 Runguta L2 P3 58,3 4 V 160 154 Runguta L2 P4 79,6 18 V	B D D A A A A A A
156 150 Runguta L2 P2 24,2 D 157 151 Runguta L2 P3 38,9 V 158 152 Runguta L2 P3 82,8 30 V 159 153 Runguta L2 P3 58,3 4 V 160 154 Runguta L2 P4 79,6 18 V	D B A A A D A A
157 151 Runguta L2 P3 38,9 V 158 152 Runguta L2 P3 82,8 30 V 159 153 Runguta L2 P3 58,3 4 V 160 154 Runguta L2 P4 79,6 18 V	D B A A A D A A A
158 152 Runguta L2 P3 82,8 30 V 159 153 Runguta L2 P3 58,3 4 V 160 154 Runguta L2 P4 79,6 18 V	B A A D A A
159 153 Runguta L2 P3 58,3 4 V 160 154 Runguta L2 P4 79,6 18 V	A A A D A A
160 154 Runguta L2 P4 79,6 18 V	A A D A A
·	A D A A
161 155 Runguta L2 P4 39,5 11 V	D A A A
, · · · · · · · · · · · · · · · · · · ·	A A A
162 156 Runguta L2 P4 84,4 D	A A
163 157 Runguta L2 P5 24,8 10 V	Α
164 158 Runguta L2 P5 16,2 V	
165 159 Runguta L2 P5 46,5 14 V	D
166 160 Runguta L2 P6 40,1 D	U
167 161 Runguta L2 P6 27,1 13 V	Α
168 162 Runguta L2 P6 38,2 11 V	Α
169 163 Runguta L2 P6 32,8 11 V	Α
170 164 Runguta L2 P7 60,5 20 V	Α
171 165 Runguta L2 P7 7,0 V	Α
172 166 Runguta L4 P1 13,4 2 V	Α
173 167 Runguta L4 P1 5,1 1 V	Α
174 168 Runguta L4 P2 15,6 3 V	Α
175 169 Runguta L4 P3 32,5 5 V	В
176 0 Runguta L4 P4 0,0	
177 169 Runguta L4 P5 49,7 8 V	Α
178 170 Runguta L5 P1 63,7 20 V	Α
179 171 Runguta L5 P2 43,6 17 V	Α
180 172 Runguta L5 P2 21,7 9 V	Α
181 0 Runguta L5 P3 0,0	
182 173 Runguta L5 P4 38,9 5 V	Α
183 174 Runguta L5 P5 57,3 12 V	Α
184 175 Runguta L5 P6 2,9 0,1 V	Α
185 176 Runguta L5 P6 1,6 1 V	В
186 177 Runguta L5 P6 6,7 2 V	Α
187 0 Runguta L6 P1 0,0	
188 0 Runguta L6 P2 0,0	
189 178 Runguta L6 P3 51,0 11 M	D
190 179 Runguta L6 P3 1,1 V	A
191 180 Runguta L6 P3 1,2 V	A
192 181 Runguta L6 P4 1,0 V	A
193 182 Runguta L6 P4 1,0 V	A
194 183 Runguta L6 P4 1,0 V	A
195 184 Runguta L6 P5 14,3 3 V	A
196 185 Runguta L6 P5 14,6 8 V	A

197						DHP	Epaisseur		Qualité
198	N°d'ordre	N°_Tige_Carnet	Colline	Layon	Parcelle	(cm)	(mm)	Santé	écorçage
199	197	186	_	L6	P6		20	V	Α
200	198	0	Runguta	L6	P7	0,0			
201	199	185	Runguta	L7	P1	41,1	14	V	Α
202 188 Runguta L7 P2 9,9 4 V A 203 189 Runguta L7 P2 4,1 20 V A 204 190 Runguta L7 P3 1,0 V A 205 191 Runguta L7 P3 74,2 1 V A 206 0 Runguta L7 P4 0,0 O C C 207 191 Kamuli L1 P1 58,9 11 V A A 208 192 Kamuli L1 P1 28,8 10 V A A A C A	200	186	Runguta	L7	P1	6,4	3	V	Α
203	201	187	Runguta	L7	P1	17,8	10	V	В
204 190 Runguta L7 P3 1,0 V A 205 191 Runguta L7 P3 74,2 1 V A 206 0 Runguta L7 P4 0,0 C C C C A 207 191 Kamuli L1 P1 58,9 11 V A 208 192 Kamuli L1 P1 28,8 10 V A 209 193 Kamuli L1 P1 26,8 10 V A 210 0 Kamuli L1 P2 0,0 C C C C C C C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A A C A C A C A C A C A C <td>202</td> <td>188</td> <td>Runguta</td> <td>L7</td> <td>P2</td> <td>9,9</td> <td>4</td> <td>V</td> <td>Α</td>	202	188	Runguta	L7	P2	9,9	4	V	Α
205 191 Runguta L7 P3 74,2 1 V A 206 0 Runguta L7 P4 0,0 0 V A 207 191 Kamuli L1 P1 58,9 11 V A 208 192 Kamuli L1 P1 83,8 14 V B 209 193 Kamuli L1 P1 26,8 10 V A 210 0 Kamuli L1 P1 26,8 10 V A 210 0 Kamuli L1 P1 26,8 10 V A 211 0 Kamuli L1 P1 20,0 D V A 211 0 Kamuli L4 P2 75,5 13 V A A 213 195 Kamuli L2 P1 37,9 18 V A A 215 197 Kamuli L2 P1 37,3 14 V B	203	189	Runguta	L7	P2	4,1	20	V	Α
206 0 Runguta L7 P4 0,0 207 191 Kamuli L1 P1 58,9 11 V A 208 192 Kamuli L1 P1 83,8 14 V B 209 193 Kamuli L1 P1 26,8 10 V A 210 0 Kamuli L1 P1 26,8 10 V A 210 0 Kamuli L1 P1 26,8 10 V A 210 0 Kamuli L1 P2 0,0 C C C C C C C A C A	204	190	Runguta	L7	Р3	1,0		V	Α
207 191 Kamuli L1 P1 58,9 11 V A 208 192 Kamuli L1 P1 83,8 14 V B 209 193 Kamuli L1 P1 26,8 10 V A 210 0 Kamuli L1 P2 0,0 C C 211 0 Kamuli L4 P1 0,0 C C C 211 0 Kamuli L4 P1 0,0 C A C C A C C C A C C C A C C C A C C C A C C C A C C A C C C A C <td>205</td> <td>191</td> <td>Runguta</td> <td>L7</td> <td>Р3</td> <td>74,2</td> <td>1</td> <td>V</td> <td>Α</td>	205	191	Runguta	L7	Р3	74,2	1	V	Α
208 192 Kamuli L1 P1 83,8 14 V B 209 193 Kamuli L1 P1 26,8 10 V A 210 0 Kamuli L1 P2 0,0 211 0 Kamuli L4 P1 0,0 212 194 Kamuli L4 P2 75,5 13 V A 213 195 Kamuli L4 P2 37,9 18 V A 214 196 Kamuli L2 P1 37,3 14 V A 215 197 Kamuli L2 P1 82,5 14 V B 216 198 Kamuli L2 P1 9,9 V A 217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 219 0 Kamuli L3 P1 0,0 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A <t< td=""><td>206</td><td>0</td><td>Runguta</td><td>L7</td><td>P4</td><td>0,0</td><td></td><td></td><td></td></t<>	206	0	Runguta	L7	P4	0,0			
209 193 Kamuli L1 P1 26,8 10 V A 210 0 Kamuli L1 P2 0,0 211 0 Kamuli L4 P1 0,0 212 194 Kamuli L4 P2 75,5 13 V A 213 195 Kamuli L4 P2 37,9 18 V A 214 196 Kamuli L2 P1 37,3 14 V A 215 197 Kamuli L2 P1 82,5 14 V B 216 198 Kamuli L2 P1 9,9 V A 217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 219 0 Kamuli L3 P1 0,0 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 48,1 9 V A 223 199 Kamuli L3 P3 96,2 14 V A <td< td=""><td>207</td><td>191</td><td>Kamuli</td><td>L1</td><td>P1</td><td>58,9</td><td>11</td><td>V</td><td>Α</td></td<>	207	191	Kamuli	L1	P1	58,9	11	V	Α
210 0 Kamuli L1 P2 0,0 211 0 Kamuli L4 P1 0,0 212 194 Kamuli L4 P2 75,5 13 V A 213 195 Kamuli L4 P2 37,9 18 V A 214 196 Kamuli L2 P1 37,3 14 V A 215 197 Kamuli L2 P1 82,5 14 V B 216 198 Kamuli L2 P1 9,9 V A 217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 V A 219 0 Kamuli L3 P1 0,0 V A 220 196 Kamuli L3 P3 48,1 9 V A 221 197 Kamuli L3 P3 88,2 14 V <t< td=""><td>208</td><td>192</td><td>Kamuli</td><td>L1</td><td>P1</td><td>83,8</td><td>14</td><td>V</td><td>В</td></t<>	208	192	Kamuli	L1	P1	83,8	14	V	В
211 0 Kamuli L4 P1 0,0 212 194 Kamuli L4 P2 75,5 13 V A 213 195 Kamuli L4 P2 37,9 18 V A 214 196 Kamuli L2 P1 37,3 14 V A 215 197 Kamuli L2 P1 82,5 14 V B 216 198 Kamuli L2 P1 9,9 V A 217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 219 0 Kamuli L3 P1 0,0 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 226 0 Kano	209	193	Kamuli	L1	P1	26,8	10	V	Α
212 194 Kamuli L4 P2 75,5 13 V A 213 195 Kamuli L4 P2 37,9 18 V A 214 196 Kamuli L2 P1 37,3 14 V A 215 197 Kamuli L2 P1 82,5 14 V B 216 198 Kamuli L2 P1 9,9 V A 217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 219 0 Kamuli L3 P1 0,0 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 225 0 Kano L2 P3 3,5 V A 228	210	0	Kamuli	L1	P2	0,0			
213 195 Kamuli L4 P2 37,9 18 V A 214 196 Kamuli L2 P1 37,3 14 V A 215 197 Kamuli L2 P1 82,5 14 V B 216 198 Kamuli L2 P1 9,9 V A 217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 V A 219 0 Kamuli L3 P1 0,0 V A 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli	211	0	Kamuli	L4	P1	0,0			
214 196 Kamuli L2 P1 37,3 14 V A 215 197 Kamuli L2 P1 82,5 14 V B 216 198 Kamuli L2 P1 9,9 V A 217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 219 0 Kamuli L3 P1 0,0 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 225 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano	212	194	Kamuli	L4	P2	75,5	13	V	Α
215 197 Kamuli L2 P1 82,5 14 V B 216 198 Kamuli L2 P1 9,9 V A 217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 219 0 Kamuli L3 P1 0,0 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 95,5 V A 231 204 Kano L	213	195	Kamuli	L4	P2	37,9	18	V	Α
216 198 Kamuli L2 P1 9,9 V A 217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 O C A 219 0 Kamuli L3 P1 0,0 V A <t< td=""><td>214</td><td>196</td><td>Kamuli</td><td>L2</td><td>P1</td><td>37,3</td><td>14</td><td>V</td><td>Α</td></t<>	214	196	Kamuli	L2	P1	37,3	14	V	Α
217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 219 0 Kamuli L3 P1 0,0 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 95,5 V A 230 203 Kano L2 P3 1,4 V A 231 204 Kano L2	215	197	Kamuli	L2	P1	82,5	14	V	В
217 199 Kamuli L2 P2 8,6 V A 218 0 Kamuli L2 P3 0,0 219 0 Kamuli L3 P1 0,0 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 95,5 V A 230 203 Kano L2 P3 1,4 V A 231 204 Kano L2	216	198	Kamuli	L2	P1	9,9		V	Α
218 0 Kamuli L2 P3 0,0 219 0 Kamuli L3 P1 0,0 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 0,6 V A 230 203 Kano L2 P3 1,4 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2	217	199	Kamuli	L2	P2	8,6		V	Α
219 0 Kamuli L3 P1 0,0 220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 95,5 V A 230 203 Kano L2 P3 1,4 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A	218	0	Kamuli	L2	Р3				
220 196 Kamuli L3 P2 7,0 V A 221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 O C C C D C C D C C D C D C C D C C D C C D C D C D C D C D C D C D C D C D C D<	219	0	Kamuli	L3	P1				
221 197 Kamuli L3 P3 48,1 9 V A 222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 0,6 V A 230 203 Kano L2 P3 95,5 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A					P2			V	Α
222 198 Kamuli L3 P3 88,2 14 V A 223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 0,6 V A 230 203 Kano L2 P3 95,5 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A					Р3		9	V	
223 199 Kamuli L3 P3 96,2 14 V B 224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 0,6 V A 230 203 Kano L2 P3 95,5 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A				L3	Р3		14	V	Α
224 0 Kamuli L3 P4 0,0 225 0 Kano L2 P1 0,0 226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 0,6 V A 230 203 Kano L2 P3 95,5 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A									
225 0 Kano L2 P1 0,0 226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 0,6 V A 230 203 Kano L2 P3 95,5 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A									
226 0 Kano L2 P2 0,0 227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 0,6 V A 230 203 Kano L2 P3 95,5 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A									
227 200 Kano L2 P3 3,5 V A 228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 0,6 V A 230 203 Kano L2 P3 95,5 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A									
228 201 Kano L2 P3 1,9 V A 229 202 Kano L2 P3 0,6 V A 230 203 Kano L2 P3 95,5 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A								V	Α
229 202 Kano L2 P3 0,6 V A 230 203 Kano L2 P3 95,5 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A									
230 203 Kano L2 P3 95,5 V A 231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A									
231 204 Kano L2 P3 1,4 V A 232 205 Kano L2 P3 1,9 V A								V	
232 205 Kano L2 P3 1,9 V A									
								V	
	233			L2	Р3	0,6		V	Α
234 207 Kano L2 ACS3G 5,4 V A									
235 208 Kano L2 ACS3G 46,2 3 V A							3		
236 209 Kano L2 ACS3G 3,2 M B							3		
237 210 Kano L2 ACS3G 6,7 V A									
238 211 Kano L2 ACS3G 8,0 V A									
239 212 Kano L2 ACS3G 51,0 V A									

	NO = -	6 U''	_	<u></u>	DHP	Epaisseur	Qualité
N°d'ordre	N°_Tige_Carnet		Layon		-		écorçage
240		Kano	L2	ACS3G	5,2	V	Α
241		Kano	L2	ACS3G	2,5	V	Α
242		Kano	L2	ACS3G	86,0	V	Α
243		Kano	L2	ACS3G	3,2	M	D
244		Kano	L2	ACS3G	3,2	V	Α
245	218	Kano	L2	P5	10,8	V	Α
246	219	Kano	L2	P5	1,5	V	Α
247	220	Kano	L2	P5	1,6	V	Α
248	221	Kano	L2	P5	3,5	V	Α
249	222	Kano	L2	P5	47,8	V	Α
250	223	Kano	L2	P5	1,9	V	Α
251	224	Kano	L2	P5	1,4	V	Α
252	225	Kano	L2	ACS5G	0,0		
253	0	Kano	L2	ACS5D	0,0		
254	0	Kano	L2	P6	0,0		
255	225	Kano	L2	P7	11,1	V	Α
256	226	Kano	L2	P7	6,4	V	Α
257	227	Kano	L2	P7	0,6	V	Α
258	228	Kano	L2	P7	0,8	V	Α
259	229	Kano	L2	P7	0,5	V	Α
260	230	Kano	L2	P7	0,5	V	Α
261	231	Kano	L2	P7	0,5	V	Α
262	232	Kano	L2	P7	0,6	V	Α
263	233	Kano	L2	P7	95,5	V	Α
264	234	Kano	L2	P7	1,5	V	Α
265	235	Kano	L2	P7	0,6	V	Α
266		Kano	L2	ACS7G	0,0		
267	0	Kano	L2	ACS7D	0,0		
268		Kano	L2	P8	0,0		
269		Kateku	L2	P1	14,6	V	Α
270		Kateku	L2	P1	3,5	V	Α
271		Kateku	L2	P1	10,2	V	Α
272		Kateku	L2	P1	8,6	V	Α
273		Kateku	L2	P1	53,2	V	Α
274		Kateku	L2	P2	3,5	V	Α
275		Kateku	L2	P2	1,0	V	A
276		Kateku	L2	P2	2,5	V	A
277		Kateku	L2	P2	4,1	V	A
278		Kateku	L2	P2	124,2	V	A
279		Kateku	L2	P2	2,5	V	A
280		Kateku	L2	P2	1,0	V	A
281		Kateku	L3	P1	0,0	V	
	0						

					DHP	Epaisseur		Qualité
N°d'ordre	N°_Tige_Carnet	Colline	Layon	Parcelle	(cm)	(mm)	Santé	écorçage
283	248	Kateku	L3	Р3	4,5		V	Α
284	249	Kateku	L3	Р3	1,6		V	Α
285	250	Kateku	L3	Р3	1,9		V	Α
286	0	Kateku	L3	P4	0,0			
287		Kano	L3	P1	35,0	11	V	Α
288	252	Kano	L3	P1	1,9		V	Α
289	253	Kano	L3	P1	19,4	5	V	Α
290		Kano	L3	P1	2,2		V	Α
291	255	Kano	L3	P2	3,2		V	Α
292	256	Kano	L3	P2	1,3		V	Α
293	257	Kano	L3	P2	1,0		V	Α
294	258	Kano	L3	P2	3,8		V	Α
295	259	Kano	L3	P2	28,7		M	С
296	260	Kano	L3	P2	2,2		V	Α
297	261	Kano	L3	P2	1,6		V	Α
298	262	Kano	L3	P2	3,8		V	Α
299	263	Kano	L3	P2	6,7		V	Α
300	264	Kano	L3	P2	1,6		V	Α
301	265	Kano	L3	P2	1,6		V	Α
302	266	Kano	L3	P2	5,1		V	Α
303	267	Kano	L3	P2	1,3		V	Α
304	268	Kano	L3	P2	2,2		V	Α
305	269	Kano	L3	P2	1,9		V	Α
306	270	Kano	L3	P2	1,6		V	Α
307	271	Kano	L3	P2	2,9		V	Α
308	272	Kano	L3	P2	8,0		V	Α
309	273	Kano	L3	P2	2,2		V	Α
310	274	Kano	L3	P2	5,7		V	Α
311	275	Kano	L3	P2	8,6		V	Α
312	276	Kano	L3	P2	5,1		V	Α
313	277	Kano	L3	P2	4,1		V	Α
314	278	Kano	L3	P2	1,9		V	Α
315	279	Kano	L3	P2	80,6	15	V	Α
316	280	Kano	L3	P2	19,1		V	Α
317	281	Kano	L3	P2	79,6		V	Α
318	282	Kano	L3	P2	17,2	4	V	Α
319	283	Kano	L3	P2	44,6	11	V	Α
320	284	Kano	L3	P2	2,9		V	Α
321	285	Kano	L3	ACS2D	51,3	12	V	Α
322	286	Kano	L3	ACS2D	9,9		V	Α
323	287	Kano	L3	ACS2D	8,6		V	Α
324	288	Kano	L3	ACS2D	8,3		٧	Α
325	289	Kano	L3	ACS2D	11,5		V	Α

N°d'ordre	N°_Tige_Carnet	Callina	Layon	Parcelle	DHP (cm)	Epaisseur (mm)	Santá	Qualité écorçage
326		Kano	L3			(11111)	V	
320		Kano	L3 L3	ACS2D	3,2		V V	A
				ACS2D	4,1	10		A
328		Kano	L3	ACS2G	22,0	10		A
329		Kano	L3	ACS2G	21,3	12	M	A
330		Kano	L3	ACS2G	20,1	12		A
331		Kano	L3	ACS2G	34,7	14		A
332		Kano	L3	ACS2G	19,1	10		A
333		Kano	L3	ACS2G	3,5	4.4	V	A
334		Kano	L3	ACS2G	16,9	11		A
335		Kano	L3	ACS2G	16,9	10		A
336		Kano	L3	ACS2G	14,6	10		Α
337		Kano	L3	ACS2G	35,0	12		Α
338		Kano	L3	ACS2G	5,1		V	Α
339		Kano	L3	ACS2G	29,0		V	Α
340		Kano	L3	ACS2G	6,7		V	Α
341		Kano	L3	P8	13,1		V	Α
342	306	Kano	L3	Р9	2,2		V	Α
343	307	Kano	L3	Р9	3,5		V	Α
	200	Buhimba						_
344	308	kasopo	L1	P1	1,9		V	Α
345	309	Buhimba kasopo	L1	P1	1,6		V	Α
	303	Buhimba			1,0		•	,,
346	310	kasopo	L1	P1	8,6		V	Α
		Buhimba						
347	311	kasopo	L1	P1	7,0		V	Α
		Buhimba						
348	312	•	L1	P1	1,6		V	Α
240	242	Buhimba	1.4	D4	4.5		.,	•
349	313	kasopo Buhimba	L1	P1	4,5		V	Α
350	21/	kasopo	L1	P1	0,3		V	Α
330	314	Buhimba	FI	1.1	0,5		V	^
351	315	kasopo	L1	P1	4,1		V	Α
		Buhimba			-,-			
352	316	kasopo	L1	P1	10,2		V	Α
		Buhimba						
353	317	kasopo	L1	P1	6,4		V	Α
		Buhimba						
354	318	kasopo	L1	P1	5,7		V	Α
355	240	Buhimba	1.4	D1	2.0		V	۸
355	319	kasopo Buhimba	L1	P1	3,8		V	Α
356	320	kasopo	L1	P1	10,8		V	Α
330	320	Buhimba	LI	1.1	10,0		v	Λ
357	321	kasopo	L1	P1	13,7		٧	Α

N°d'ordre	N°_Tige_Carnet		Layon	Parcelle	DHP (cm)	Epaisseur (mm)	Santé	Qualité écorçage
		Buhimba						
358	322	kasopo	L1	P2	67,2		V	Α
		Buhimba						
359	323	kasopo	L1	P2	5,7		V	Α
		Buhimba						
360	324	kasopo	L1	Р3	9,9		V	Α
		Buhimba						
361	325	kasopo	L1	Р3	20,7	10	V	Α
		Buhimba						
362	326	kasopo	L1	Р3	24,8	10	V	Α
		Buhimba						
363	327	kasopo	L1	Р3	52,9	20	V	Α
		Buhimba						
364	328	kasopo	L1	Р3	50,3	12	V	В
		Buhimba						
365	329	kasopo	L1	Р3	3,8		V	Α
		Buhimba						
366	0	kasopo	L1	ACS3D	0,0			
		Buhimba						
367	330	kasopo	L1	ACS3G	48,4	13	V	Α
		Buhimba						
368	331	kasopo	L1	P4	35,4	15	V	Α
		Buhimba						
369	332	kasopo	L1	P4	20,1	10	V	Α
		Buhimba						
370	333	kasopo	L1	P4	22,9	12	V	Α
		Buhimba						
371	334	kasopo	L1	P4	27,1	11	V	Α
		Buhimba						
372	335	kasopo	L1	P5	46,8	13	V	Α
		Buhimba						
373	0	kasopo	L2	P1	0,0			
		Buhimba						
374	336	kasopo	L2	P2	68,5	30	V	В
		Buhimba						
375	337	kasopo	L2	P2	17,8	12	V	В
		Buhimba						
376	338	kasopo	L2	P2	24,2		D	D
		Buhimba						
377	339	kasopo	L2	Р3	38,9		V	С
		Buhimba						
378	340	kasopo	L2	Р3	82,8	30	V	В
		Buhimba						
379	341	kasopo	L2	Р3	58,3	4	V	Α
		Buhimba						
380	342	kasopo	L2	P4	79,6	18	٧	Α
		Buhimba						
381	343	kasopo	L2	P4	39,5	11	V	Α

N°d'ordre	N°_Tige_Carnet	Colline	Layon	Parcelle	DHP (cm)	Epaisseur (mm)	Santé	Qualité écorçage
	go	Buhimba			(4)	(······)		22213182
382	344	kasopo Buhimba	L2	P4	84,4		D	Α
383	345	kasopo Buhimba	L2	P5	24,8	10	V	Α
384	346	kasopo Buhimba	L2	P5	16,2	11	V	Α
385	347		L2	P5	46,5	14	V	Α
386	348	kasopo Buhimba	L2	P6	40,1		D	D
387	349	kasopo Buhimba	L2	P6	27,1	13	V	Α
388	350	kasopo Buhimba	L2	P6	38,2	11	V	Α
389	351	kasopo Buhimba	L2	P6	32,8	11	V	Α
390	352	kasopo Buhimba	L2	P7	60,5	20	V	Α
391	353	kasopo Buhimba	L2	P7	7,0		V	Α
392	0	kasopo Buhimba	L3	P1	0,0			
393	354	kasopo Buhimba	L3	P2	56,7	60	V	В
394	355	kasopo Buhimba	L3	P3	86,0	19	V	Α
395	356	kasopo Buhimba	L3	Р3	47,8	10	V	Α
396	357		L3	P4	11,8	10	V	Α
397	358	kasopo Buhimba	L3	P4	15,6	20	V	Α
398	359	kasopo Buhimba	L3	P4	13,4	18	V	Α
399	360	kasopo Buhimba	L3	P4	22,7	35	V	Α
400	361	kasopo Buhimba	L3	ACS4G	14,3	4	V	Α
401	362	kasopo Buhimba	L3	ACS4G	36,6	7	V	Α
402	0	kasopo Buhimba	L3	ACSD	0,0			
403	363	kasopo Buhimba	L4	P1	13,4	2	V	Α
404	364	kasopo Buhimba	L4	P1	5,1	0,9	V	Α
405	366	kasopo	L4	P2	15,6	3	V	Α

					DHP	Epaisseur		Qualité
N°d'ordre	N°_Tige_Carnet	Colline	Layon	Parcelle	(cm)	(mm)	Santé	écorçage
		Buhimba						
406	367	kasopo Buhimba	L4	P3	32,5	5	V	В
407	0	kasopo Buhimba	L4	P4	0,0			
408	368	kasopo	L4	P5	49,7	8	V	Α
409	369	Ngambi	L1	P1	41,1	14	V	Α
410	370	Ngambi	L1	P1	6,4	3	V	Α
411	371	Ngambi	L1	P1	17,8	10	V	В
412	372	Ngambi	L1	P2	9,9	4	V	Α
413	373	Ngambi	L1	P2	47,1	17	V	Α
414	374	Ngambi	L1	Р3	1,0		V	Α
415	375	Ngambi	L3	P4	74,2	15	V	Α