

Supply Chain Management of Multiple Biomass Utilization for Bioenergy and Bioproducts

Jingxin Wang

Center for Sustainable Biomaterials & Bioenergy

West Virginia University

Morgantown, WV 26506 USA

Biomass Energy in the U.S.

U.S. primary energy consumption by energy source, 2021

Data source: U.S. Energy Information Administration, Monthly Energy Review, Table 1.3 and 10.1 April 2022, preliminary data

eia) Note: Sum of components may not equal 100% because of independent rounding.

CENTER FOR SUSTAINABLE

TERIALS & BIOENERGY

Biomass and Forest Biomass? Forest carbon neutral?

U.S. primary energy production by major sources, 2021

Data source: U.S. Energy Information Administration, Monthly Energy Review, April 2022, preliminary data Note: NGPL is natural gas plant liquids: other is geothermal and solar: hydro is conventional hydroelectric.

Supply Chains

- Clean alternative to fossil fuels
- Waste reduction in wood related industries
- Rural economic development
- Valuable commodity in-state and beyond

Wang, J. 2022. Forest and Biomass Harvest and Logistics. Springer Nature. Cham, Switzerland. 386 pp.

Harvest and Logistics

- Harvest and logistics, traditional systems for specific timber type and terrain vs. SRWC harvester
- Land and water uses
- Technologies
- Market
- Workforce
- Policies
- Uncertainties

Biomass Harvest and Logistics

- One of the first dedicated harvesters for SRWC.
- By Case New Holland with SUNY ESF
- Max material size: 6"
- Chip length 0.4-1.8"
- 3 to 5 ac per hour

Biomass Procurement – Base Case

ID	Facility Locations	Min Transport Distance (km)	Average Transport Distance (km)	Max Transport Distance (km)	Average Total cost \$/dry Mg
1	Schenectady	11.41	57.77	107.07	81.75
2	Onondaga	20.62	62.24	180.39	82.51
3	Jefferson	17.49	59.16	204.95	83.40
4	Pike	34.36	64.75	155.78	86.13
5	Washington	15.38	75.2	201.44	86.97
6	Cambria	9.43	42.05	127.49	81.76
7	Cameron	13.48	62.56	154.36	83.88
8	Cumberland	3.6	45.62	181.59	81.67
9	Raleigh	5.23	57.96	129.43	82.57
10	Taylor	5.32	65.65	192.33	83.81
11	Aroostook	2.34	28.11	85.63	71.96
12	Kennebec	5.62	35.62	88.54	78.76
13	Penobscot	2.17	22.04	89.22	67.90
14	Grafton	8.17	38.11	99.78	76.56
15	Rutland	7.93	46.15	108.92	77.48

0	ptimization results	(\$/dry N	lg)
---	---------------------	-----------	-----

Total delivery cost	80.47
Establishment cost	27.29
Harvest cost	32.45
Transportation cost	9.34
Storage cost	4.47
Preprocessing cost	7.28

CENTER FOR SUSTAINABLE BIOMATERIALS & BIOENERGY

Spatial Distribution of Delivered Cost

Wang, Y., J. Wang, J. Schuler, D. Hartley, T. Volk, and M. Eisenbies. 2020. Optimization of harvest and logistics for multiple lignocellulosic biomass feedstocks in the Northeastern United States. Energy. <u>https://doi.org/10.1016/j.energy.2020.117260</u>.

Cost Composition by Feedstock

Wang, Y., J. Wang, J. Schuler, D. Hartley, T. Volk, and M. Eisenbies. 2020. Optimization of harvest and logistics for multiple lignocellulosic biomass feedstocks in the Northeastern United States. Energy. <u>https://doi.org/10.1016/j.energy.2020.117260</u>.

Biomass Harvest Costs

Zhang, X., Wang, J., & Strager, M. P. 2022. Industrial Development and Economic Impacts of Forest Biomass for Bioenergy: A Data-Driven Holistic Analysis Framework. Resources, Conservation and Recycling, 182, 106296.

Life Cycle Impacts

Wang, Y., J. Wang, X. Zhang, and S. Grushecky. 2020. Environmental and Economic Assessments and Uncertainties of Multiple Lignocellulosic Biomass Utilization for Bioenergy Products: Case Studies. Energies 2020, 13, 6277; doi:10.3390/en13236277. Impact Factor 2.702

Life Cycle Impacts

The results illustrated that the global warming (GW) impact of biochar production through BSI, OK, and ACB were 0.25-0.39, 0.55, and **0.61** Mg CO₂eq/Mg biochar applied to the field

[Biochar Solutions Incorporated (BSI), Oregon Kiln (OK), and Air Curtain Burner (ACB)]

Sahoo K. et al. 2021. Life-cycle assessment and techno-economic analysis of biochar produced from forest residues using portable systems. The International Journal of Life Cycle Assessment. 26(1): 189-213. https://doi.org/10.1007/s11367-020-01830-9.

Techno-economic Impacts

Zhang, X., Wang, J., & Strager, M. P. 2022. Industrial Development and Economic Impacts of Forest Biomass for Bioenergy: A Data-Driven Holistic Analysis Framework. Resources, Conservation and Recycling, 182, 106296.

Future...

- Efficient biomass harvest and logistics systems with consideration of feedstock quality and decarbonization
- Value-added bioproducts or biochemicals to promote the rural economies
- Future biomass supply chain assessments using robust and consistent data analytics and tools
- Integrated production of bioenergy and bioproducts to improve the economics of the entire supply chain
- Engagement with stakeholders for bioeconomic development
- Workforce development

Contact Us

Dr. Jingxin Wang, Benedum Distinguished Scholar Davis Michael Professor of Forestry and Natural Resources Director of Center for Sustainable Biomaterials & Bioenergy Director of MASBio West Virginia University jxwang@wvu.edu bioenergy.wvu.edu MASBio.wvu.edu (304) 293 7601

Ms. Molly Ramsey, Manager of MASBio and CSBio <u>molly.ramsey1@mail.wvu.edu</u> (304) 293-0061

