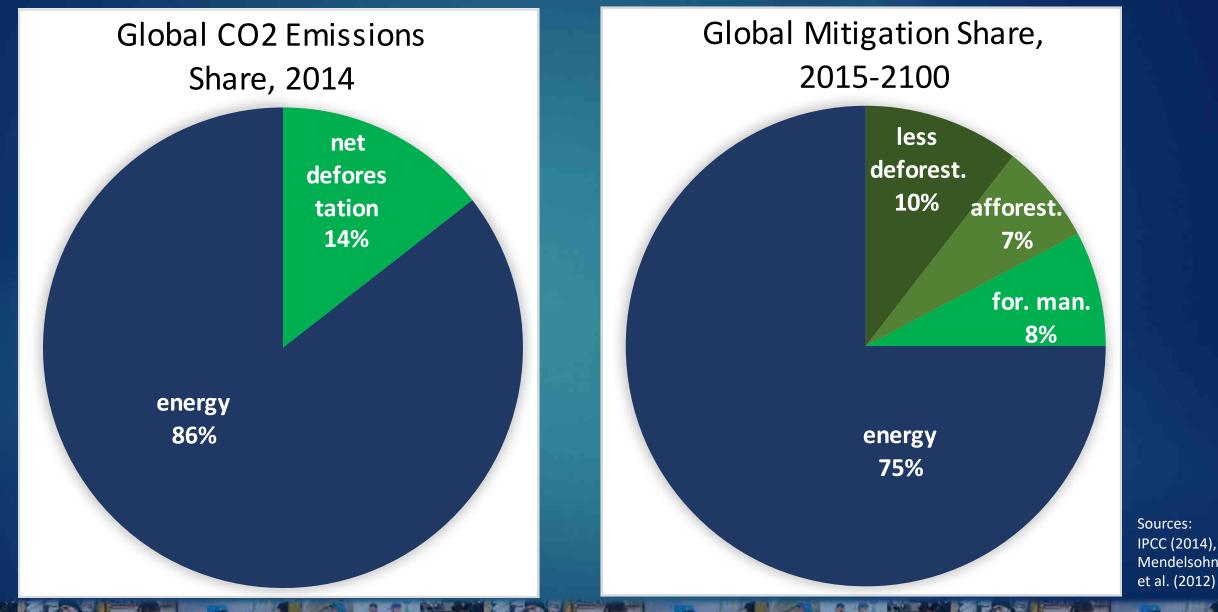
Fiscal Affairs Department


Rationale for, and Design of, Forest Carbon Feebates

Ian Parry

Fiscal Mechanisms for a Sustainable Forest Sector, Washington, DC, October 24-25, 2018

Potential Contribution of Forests to Climate Stabilization

Large Forestry Emitters will need Mitigation Instruments

Country	Paris mitigiation pledge ^a	Objectives and measures for forestry	Percent of global CO_2 from deforestation, 2001-2013
Brazil	Reduce GHGs 37% below 2005 by 2025.	Zero illegal deforestation by 2030; restoring and reforesting 12 million hectares of forests by 2030	45.5
Indonesia	Reduce GHGs 29% (41%) below BAU in 2030 by 2030.	Ban on primary forest clearance; reduce deforestation/degradation; restire ecosystem functions; sustainable forest management.	9.0
Colombia	Reduce GHGs 20% (30%) below BAU by 2030.	Reduce deforestation; preserve important ecosystems.	3.4
Bolivia	Increase renewable energy share to 79% in 2030 (relative to 29% in 2010).	Zero illegal deforesation by 2020; increase forest coverage to 4.5 million hectares by 2030; increase sustainable forestyr management.	3.1
Madagascar	Reduce GHGs (32%) below BAU by 2030 with over half of reduction from forestry.	Reforestation for sustainable timber production and species conservation; reduction of forest timber extraction; agroforestry.	2.3
Peru	Reduce GHGs 20% (30%) below BAU in 2030 by 2030.	Measures to promote forest carbon storage not specified.	2.1
Mexico	Reduce GHGs 25% (40%) below BAU in 2030 by 2030.	Measures to promote forest carbon storage not specified.	2.0
Malaysia	Reduce GHG/GDP intensity 35% (45%) by 2030 relative to 2005.	Measures to promote forest carbon storage not specified.	1.9
Paraguay	Reduce GHGs 10% (20%) below BAU in 2030 by 2030.	Measures to promote forest carbon storage not specified.	1.7
Myanmar	Targets for renewables and energy efficiency.	Increase protected/reserved forest cover to 30% of land area through REDD+ related actions.	1.7
Ecuador	Reduce energy GHGs 20.4-25% (37.5-45.8%) below BAU in 2025.	Reforest 100,000 hectares per year to 2025.	1.5
Cambodia	Reduce GHGs (10%) below 2010 levels by 2030.	Increase forest coverage to 60% of land area by 2030.	1.5
Laos	Expand renewables; displace residential biomass buring through electricification.	Increase forest cover to 70% of land area by 2020	1.5

Source. UNFCCC.

Notes. ^aWhere applicable, more ambitious targets condtional on external finance are in parentheses.

2

Promising Instrument for Carbon Storage: Feebates

Sliding scale of fees/rebates for increases/decreases in carbon storage fee = {carbon storage_{base} - carbon storage} · price/ton stored carbon

Precedents

Low CO₂ vehicles (e.g., Den., Fr., Ger., Maur., Neth., Nor., Swe., UK)
Payment for ecosystem services (e.g., Costa Rica)

Outline

Rationale; design issues; limitations

Rationale: Economic Considerations Effectiveness and cost-effectiveness Promotes carbon storage across all responses/landowners Equalizes incremental costs across responses/landowners Avoids leakage (for landowners within national borders) Avoids fiscal costs Baselines can be chosen so revenues from fees \approx rebate outlays Scaling up Price can be aligned with emissions objectives ffairs Departmen

Rationale: Practical Considerations

Administration

Capacity for monitoring carbon storage for 47 countries under REDD+
Finance ministry could apply fees/rebates using registry of landowners
No need to assess additionality
Baseline available for measuring changes in storage
Potential support from landowners receiving rebates

Project-by-Project Approaches

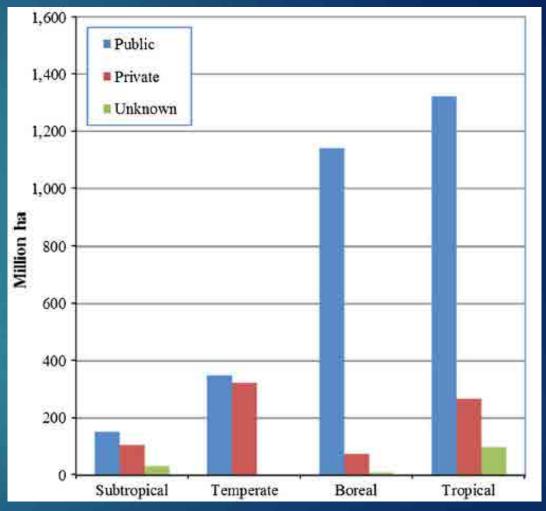
Effectiveness/cost-effectiveness/scaling up constrained by
Administrative costs from contracting
No automatic mechanism for prioritizing cost-effective projects
Need for finance

May cause leakage from landowners not covered by projects

Design Issues

Setting baseline for revenue-neutrality REDD+ reference adjusted for (national level) expected: Growth in BAU storage Proportionate increase in carbon storage from feebate Payment formulas \triangleright Ideally annual: carbon storage price = CO₂ price × interest rate In contrast, up-front payments require complex repayments if storage not permanent

Effectiveness of Carbon Pricing


	Annual CO2 sequestered, bn tonnes, 2030 from CO2 price	
Region	\$20/ton	\$50/ton
Non-annex 1 East Asia	0.5	1.0
Transition countries	0.6	1.0
Central/South America	1.4	2.5
Africa	1.3	1.7
Other Asia	1.2	1.7
Total	4.9	8.0

Limitations: Land Ownership

Most tropical forests publicly managed, but:

- Marginal land (at agricultural border) most important
- ►Forest ↔ farmland, tree plantations largely private
- Illegal logging, but:
 Some NDCs (e.g., Brazil Bolivia) pledge to eliminate it

Forest area by ownership category, 2010

Source: Whiteman and others (2015).

Limitations: International Leakage

Peer pressure may contain leakage (tracked through NDCs)

Longer-term: international price floor for forestry emissions
Guarantees minimum effort, limits leakage
Met through feebate or other carbon pricing
Article 6.2 of Paris Agreement may help with participation/enforcement
May need to focus on effective carbon price if incomplete coverage