

Scheme of mangrove restoration in Mexico

Jacinto Samuel García Carreón National Forestry Commission (CONAFOR)

Presented at International Conference on Sustainable Mangrove Ecosystems 18-21 April 2017, Bali, Indonesia

Context setting

- Mexico ranks fourth in the world in total Mangrove area.
- The most important zone is the Yucatan Peninsula, a karstic platform with 55% of the total national mangrove forest areas.
- The second largest area in the pacific coast includes the sates of Nayarit and Sinaloa with 18% of the national total.
- Mangrove species present in Mexico: Red mangrove (*Rhizophora mangle* L.), Black mangrove (*Avicenia germinans* (I.) L.), White mangrove (*Laguncularia racemosa* (L.) Gaertn.
 f) Button mangrove (*Conocarpus erectus* L.) Mangrove (*Bhizophora x*)
 - f.), Button mangrove (*Conocarpus erectus* L.), Mangrove (*Rhizophora x harrisonii* Leechm.) and *Avicennia bicolor*.

Distribution of mangrove forest in Mexico

Priority areas for mangrove forest restoration

Legal framework in Mexico for mangroves

- General Law for Ecological Equilibrium and Environment protection.
- General Law for Wildlife
- Official Norm (NOM 022 SEMARNAT 2003) for conservation and sustainable harvest of mangrove.
- Official Norm (NOM 059 SEMARNAT 2010) for protection of endangered species (all mangrove species considered **endangered** species).

>Legal control problem:

- The legal framework is highly restricted, the owners need to go throught a number processes to collect seeds, produce plants and restore mangroves.
- Harvest is forbidden, since ilegal harvesting and land changes is the biggest threat to mangroves.
- It's possible to use the resources brought forth by the mangrove (wood, fish, etc.) as long as the mangrove as a whole is not affected.

Main problems associated with mangrove degradation

- Modifying hydric flows changes the water chemistry, it increases the amount of salts, alters the temperature, pH, and decreases the of amount disolved oxygen, causing a disturbance in the natural habitat of the Mangrove.
- Soil changes result depletion of carbon in the soil and subsidence that decrease of the topographical level, causing seeds not to take root.

Mangrove degradtion but don't lost of topographic level

Lost of topographic level

Soil mangrove profile

Organic soil

Threats to Mangroves

- The tides move the propagules and the loss of topographic level, doesn't permit the establishment of new mangrove plants.
- The loss of organic carbon fixation in the soil, caused by the oxidation process is a big issue, some other threats are changes in soil properties, mainly porosity, permeability as well as the interruption of capillary flow.

Mongrove restoration projects and hectars in Mexico

Period	Projects	hectars	USD(\$)
2013-2015	11	1,606	2,306,402
2016	13	3,808	7,751,501
2017	13	1,501	3,770,023
Total	37	6,915	13,827,926

Restoration lessons in Mexico

First, we need identity the reference site, flow direction and the soil parameters.

- Topographic level
- Level of capillar water
- Salinity
- * Temperature
- Disolved oxygen

Restoration the hydric flows by channels.

Revegetation or reforestation, revegetation is easily and cheaper.

Salinity before construction of flow channels 90°27'0'W 90°28'30'W 90°29'0'W 90°26'30"W

20

Salinity after construction of flow

SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

Reference site

Reference site

microtopographic level

Take parameter measures

When the major hydric flow is identified, we need make channels for flow restitution.

Recover the topographic level by sedimentation and

icland rectaration

Sedimentation pools and plantation platform

Collection and selection of seeds

Collection and selection of seeds

Forestation channels and restoration islands

