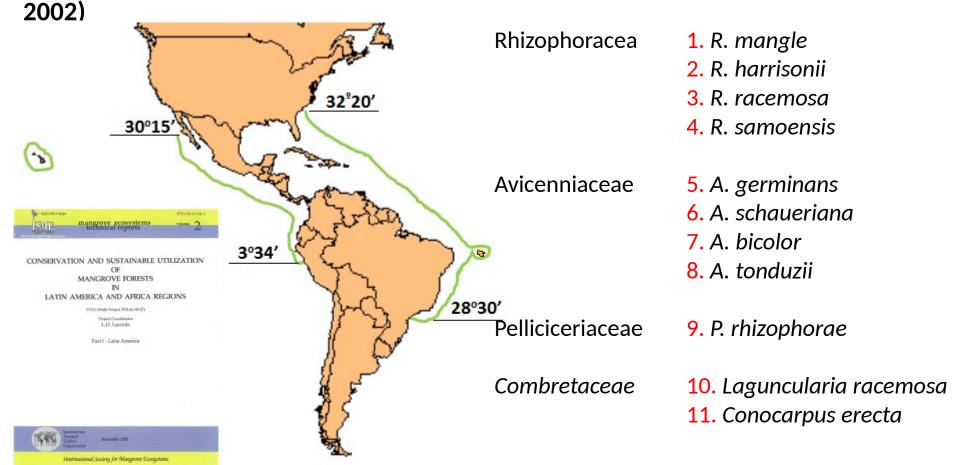
Neotropical mangroves: conservation and sustainable use in a scenario of global climate changes

Luiz Drude de Lacerda


Marine Sciences Institute (LABOMAR)
Universidade Federal do Ceará (UFC)

Latitudinal distribution and composition of Neotropical mangroves (Lacerda, 1993,

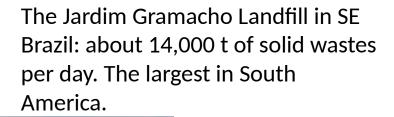
Mangrove area in Latin America and the Caribbean (~26% of the world's mangroves)

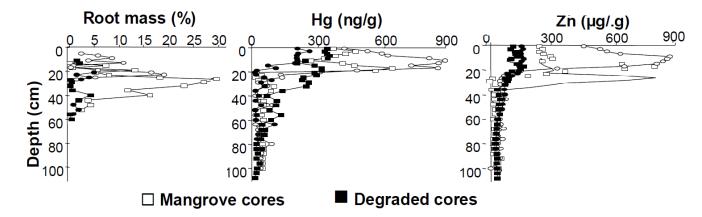
Atlantic Coast 2.14 x 10⁶ ha
Pacific Coast 1.54 x 10⁶ ha
Caribbean Islands 0.76 x 10⁶ ha

Total 4.06 (3.58 – 4.54) x 10⁶ ha

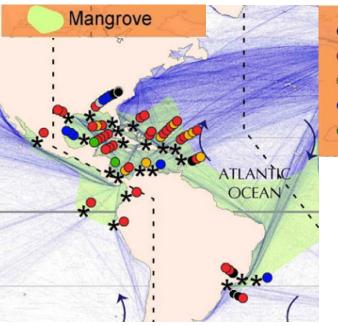
Summary of drivers, pressures and impacts on mangroves of Latin America and the Caribbean regions acting from the 1970's to the 1990's *

Drivers	Major Pressures	Major Impacts	Response	Observations
Urbanization	Solid waste disposal; area conversion; wastewaters disposal	Contamination of the biota; eutrophication; mangrove eradication	Coastal Zone Management Plans; improving wastes treatment Integrating green & grey architecture, reforestation	Major Widespread through the region
Industrialization	Effluents disposal Oil spills	Contamination of the biota; tree and fauna mortality	Stronger regulations; improving wastes treatment; changing technologies; banning tank washing; improving preparedness	Major Restricted to most industrialized nations, Brazil and Colombia, in particular.
Damming	Sediment and salt balance; nutrient fluxes	Frosion of coastal forests; burying basin forests; increasing soil and pore water salinity	Watershed committees including coastal communities' representatives.	Major Particularly important along semiarid regions.
Agriculture	Nutrient fluxes; chemical effluents, land reclamation	Eutrophication; contamination of the biota; deforestation	Watershed communities regulating land uses, restriction on agrochemicals use.	Intermediate
Forestry	Wood and wood products exploitation	Deforestation	Restraining mangrove wood use; Extractive reserves; reforestation community-based management.	Intermediate Particular in Central America and Venezuela
Tourism	Waste disposal; forest conversion	Localized eutrophication and deforestation.	Tourism environmental regulations; Eco-tourism.	Intermediate Particularly in Caribbean nations
Fisheries	Fisheries products	Overfishing and decreasing stocks	Community -based management; establishing fishing seasons (defesos)	Minor Particularly successful for mangrove crabs and species reproducing in mangroves.
Salt production	Conversion	Deforestation	Abandoning ponds	Minor In semiarid regions
Aquaculture	Conversion; Nutrient fluxes	Deforestation; eutrophication	Initial regulation laws, public awareness.	Minor Mostly restricted to Ecuador, the 2 nd world shrimp producer in 1991; and to a lesser extent in Central America


^{*} ITTO-ISME Project PD114/90 (F) Conservation and Sustainable Utilization of Mangrove Forests in Latin America and Africa Regions


Intensive and extensive destruction of mangrove areas, solid waste disposal, contamination of biological resources.

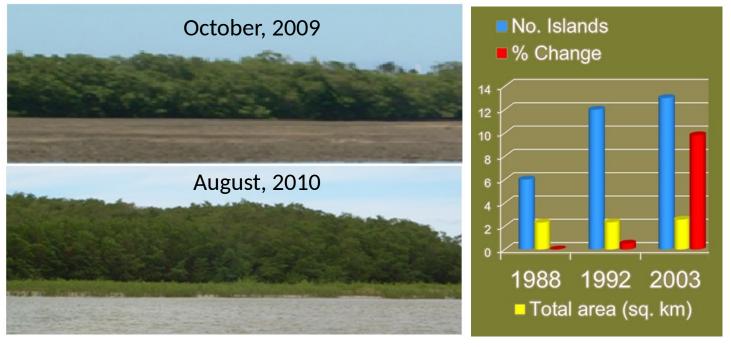
Incorporating mangrove in urban structure (green architecture); aesthetics and protection



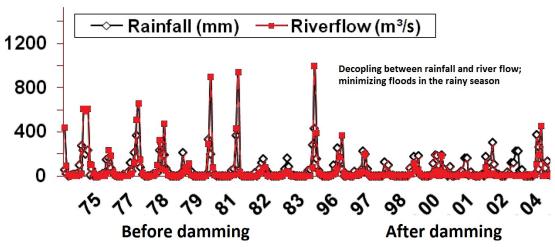
Rehabilitation and using mangrove as filters to protect adjacent coastal areas. Mangrove rhizosphere actually trap metals from ground water leaching, avoiding contamination of adjacent coastal waters

Reported oil spill incidents with actual impacts on mangrove habitats between 1970 and 1999 and between 2000 and 2016 in Latin America and the Caribbean; and global amount of oil involved, adapted from Duke (2016).

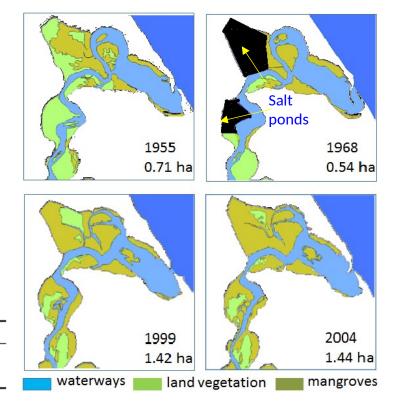
Category	1970-1999	2000-2016
Number of incidents	71 (2.4 yr ⁻¹)	69 (4.3 yr ⁻¹)
Total area of dead mangroves (ha)	100 (3.3 yr ⁻¹)	13 (0.8 yr ⁻¹)
Global amount spilled (t/spill)	30,990 - 60,187	6,664 - 15,832
	(1,520 yr ⁻¹)	(703 yr ⁻¹)
Global area affected, oiled (ha)	24,419 (814 yr ⁻¹)	3,627 (227 yr ⁻¹)


- Oil Spill, pipeline
- Oil Spill, vessel
- Oil Spill, shore tank
- Oil Spill, well head
- Oil Spill, field trial

Oils spills in Latin American and Caribbean mangrove forests, showing hot spots in the Caribbean and SE Brazil. Modified from Duke (2016)


Effect on the biota

Siltation of estuaries and colonization by mangroves. Erosion of fringe mangroves due to reducing sediment supply to the coast and sea level rise in northeastern Brazil



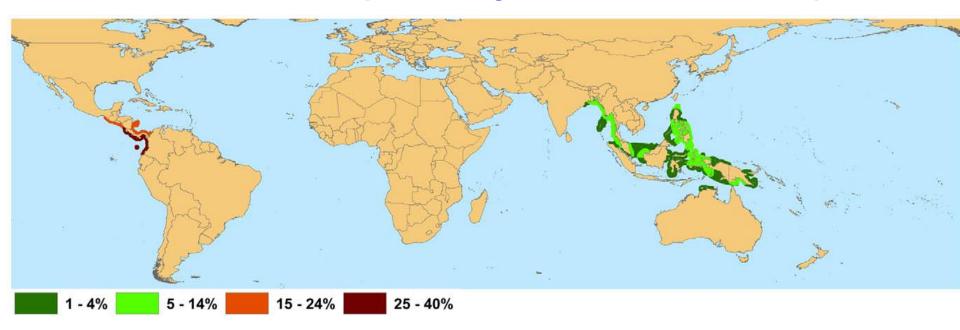
Salt production and mangroves. A significant area of natural mangrove rehabilitation derived from abandoned slat pods. An example is the Pacoti River Estuary, NE Brazil.


		-
1/	m	4
ĸ		

Year	1958	1968	1999	2004
Mangrove area	0.71	0.54	1.42	1.44
Salt ponds	0.00	0.69	0.00	0.00

Eutrophication and siltation of estuaries

- Eutrophication due to excess nutrient release;
- Erosion at extrusion canals and siltation of estuaries due to large amount of suspended solids in effluents.
- Although limited in area in the 1980's and 1990's, emission factors from shrimp aquaculture are higher than from all other sources of nutrients and metals to LA & C estuaries. Also, effluents are released directly into the estuarine environment

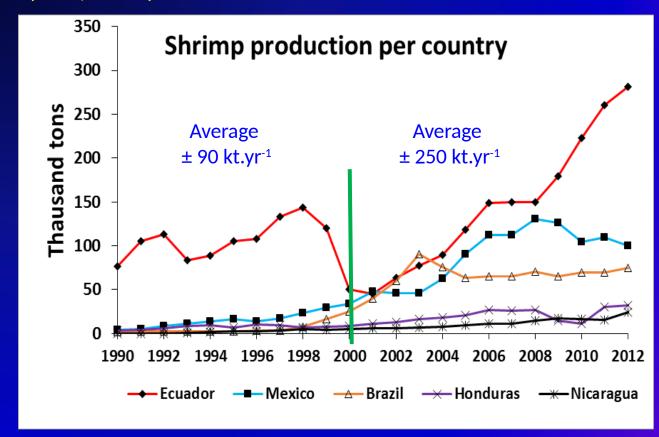

Temporal trends of the 1970's-1990's drivers and impacts and response effectiveness on mangroves of Latin America and the Caribbean regions in the 21th century (Lacerda et al., 2002; Ferreira & Lacerda, 2012).

Drivers	Major Impacts	Temporal trend	Effectiveness of the response			
Urbanization	Contamination of the biota	Increasing	Establishing Coastal Zone Management Plans (e.g. in Mexico and Brazil), but only partially able to control urban growth, in particular during economic			
	Eutrophication	Increasing	crisis;			
	Deforestation	Stable	Improving wastes treatment, but still restricted to a few metropolitan areas			
Industrialization	Contamination of the biota	Decreasing	Stronger regulations applied through the region, in particular to oil and persistent pollutants; improving wastes treatment and changing			
	Tree and fauna mortality	Decreasing	technological procedures; reduced emissions from point sources. Contamination persist, but from diffuse sources.			
Damming	Erosion of coastal forests	Increasing in semiarid coasts;	Coastal communities are still underrepresented in basin management committees, even when community based management is enforced, it has			
	Burying basin forests	stable elsewhere	small impact on the decision making process.			
	Saline intrusion					
Agriculture	Eutrophication	Increasing	A shift to intensive agriculture diminish the impact of responses, by increasing nutrient emissions. However, stronger legislation decreased land conversion, and agrochemicals' use.			
	Contamination of the biota	Decreasing				
	Deforestation	Decreasing				
Forestry	Deforestation	Decreasing	Protection of forests and creation of extractive reserves and community -based management largely decreased deforestation			
Tourism	Localized eutrophication	Decreasing	Reduction of impacts occurred throughout the region do to responses involving a better understanding of the role of preserved mangrove areas for the activity proper, such as ecotourism			
	Deforestation					
Fisheries	Overfishing	Decreasing	Sustainable use of mangrove fisheries was achieved in most countries,			
	Decreasing biodiversity		including recovery of overexploited stocks			
Salt production	Deforestation	Decreasing	Market aspects largely reduced the activity in mangrove areas, abandoned ponds naturally regenerated			
Aquaculture	Deforestation Eutrophication Contamination of the biota	Increasing	Existing regulation were not sufficiently enforced to hamper the impacts on mangroves. Recent finding on pollutants emissions from the activity increased its potential as a pollution source			
	Containination of the piota		·			

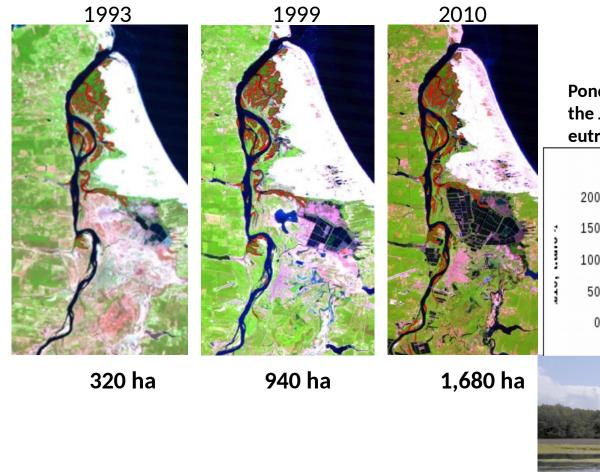
Major constrains to the societal responses:

- ✓ Lacking the inclusion of a already real climate change scenario, making some legislation towards mangrove protection, weak.
- e.g. a new forest code in Brazil, protecting forests, but excluding salt flats, which decrease mangrove resilience to rising sea level.
- ✓ Community-based management unable to cope with large capital investments. e.g. Harbor development and shrimp farming
- ✓ Extractive reserves seldom with economic planning to augment product value or finding new markets.
- e.g. organic honey production, most traditional fisheries
- ✓ Global climate change and increasing water demand along watersheds results in expanding river damming with environmental impact assessment derived for upstream systems and not including the coastal zones and their mangroves.
- e.g. Most LA&C coasts under semiarid climate

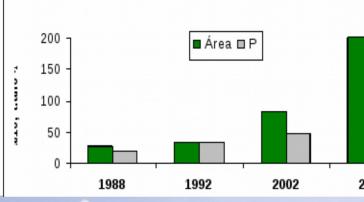
Neotropical mangroves in the 21st Century


Globally, in 2010, the highest proportion of threatened mangrove species is found along the **Atlantic and Pacific coasts of Central America**. Four of the 10 (40%) mangrove species present along the Pacific coasts of Costa Rica, Panama and Colombia are listed in one of the three threatened categories, and a fifth species *Rhizophora samoensis* is listed as **Near Threatened**. Three of these species, *Avicennia bicolor*, *Mora oleifera* and *Tabebuia palustris* all listed as **Vulnerable**, are rare or uncommon species only known from the Pacific coast of Central America (Polidoro et al., 2010).

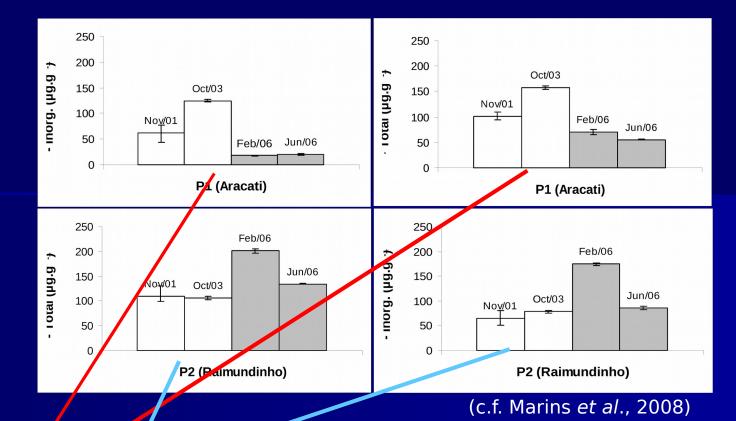
Preliminary* summary of drivers, pressures and impacts on mangroves of Latin America and the Caribbean regions acting in the 21th century*


Drivers	Major Pressures	Major Impacts	Response constrains	Observations/Trends
Aquaculture	Conversion; Nutrient emissions Sediment emissions Heavy metal emissions	Deforestation; eutrophication; Pollution siltation	Initial regulation laws did not take into consideration climate change. Public awareness insufficient or poorly distributed. Community-based management weak relative to capital pressures	Major/Increasing Widespread through LA&C continental margins; increasing up to 40% per year. Legally releasing new areas for pond construction; highest emission factors for nutrients and metals
Damming	Sediment and salt balance; nutrient fluxes	Erosion of coastal forests; burying basin forests; increasing soil and pore water salinity	Watershed committees including coastal communities' representatives fail to consider downstream, coastal impacts.	Major/Increasing Particularly important along semiarid regions.
Climate change	Sediment and salt balance; Remobilization of pollutants Frequency of extreme events	Erosion of coastal forests; burying basin forests; increasing soil and pore water salinity Contamination of biological resources Mangrove migration	No specific societal response so ever. Adaptation depends on local environmental setting and permitted adjacent human activities. Conservation laws do not include climate change as a variable.	Major/Increasing Atmospheric CO ₂ increased from 390 ppm, in 1995, to 407 ppm in 2017. Notwithstanding the Kyoto protocol, emissions are on the rising. Unknown resistance / resilience threshold for mangroves
Replanting and Rehabilitation (+)	Augmenting mangrove area;	Augmenting carbon sequestrations, natural resources availability, natural protection reduces erosion	Community-based; small relevance to government; lack of monitoring; environmental conditions resulted from the past activity	Major/Increasing Rehabilitation policy not regulated at country level. Natural regeneration treated unattained. Planting on seagrass beds
Urbanization	Solid waste disposal; area conversion; wastewaters disposal	Contamination of the biota; eutrophication; mangrove eradication	Economic crisis and impoverishment of the population	Intermediate/Stable Widespread through the region, changing with economic growth and crisis
Agriculture	Nutrient fluxes; chemical effluents, land reclamation	Eutrophication; contamination of the biota; deforestation	Watershed committees failed to advance on the coastal zone., illegal commercialization of agrotoxics	Intermediate/Stable Major impacts are from intensive irrigated agriculture

^{*} Fisheries, tourism, salt production and industrialization, are, today, considered of minor significance (??) and either decreasing or stable in importance (??), although, very site-specific. Urgent regional assessment needed, extension and gravity vary enormously locally.

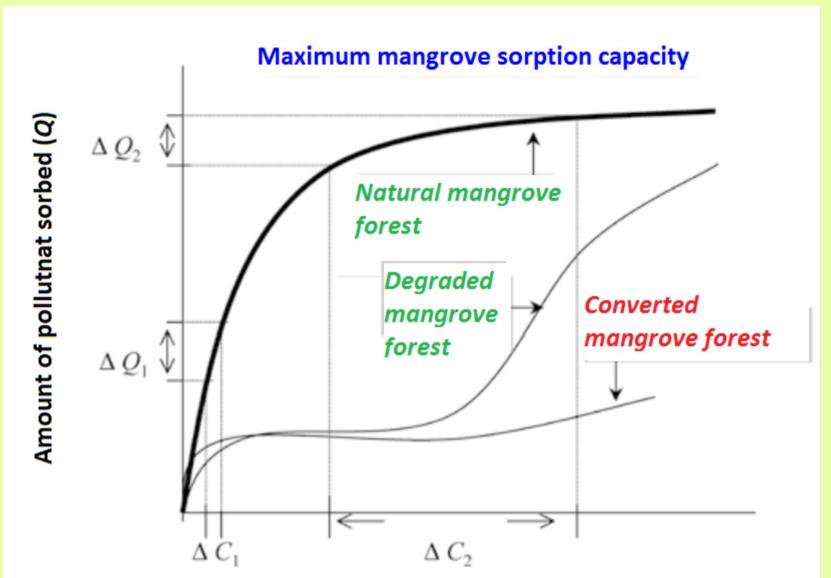

Shrimp aquaculture in Latin America and the Caribbean (FAO, 2015)

Expanding shrimp aquaculture in northeastern Brazil, the Jaguaribe Estuary.



Pond area and phosphorus emission to the Jaguaribe Estuary (upper) and fast eutrophication (lower)

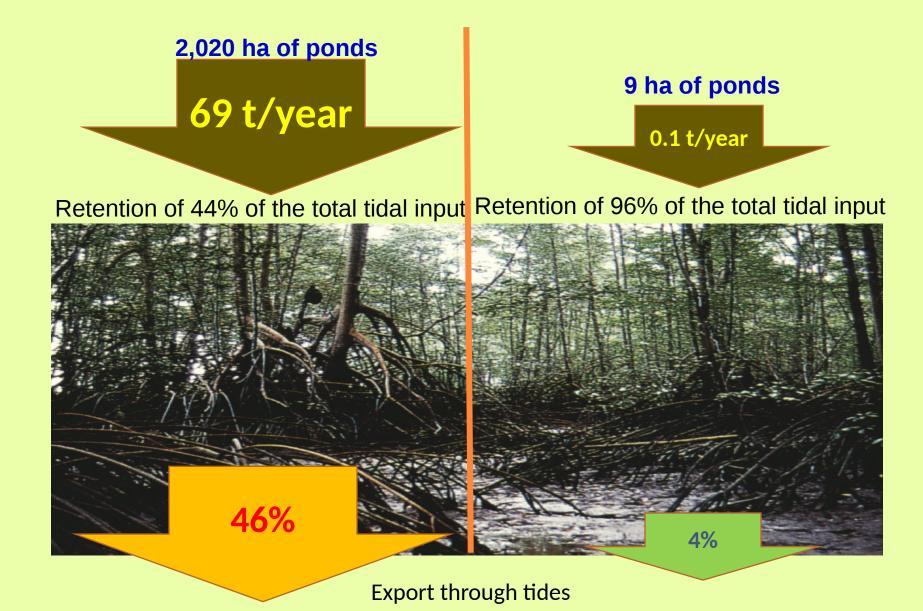
Shifting eutrophication sources

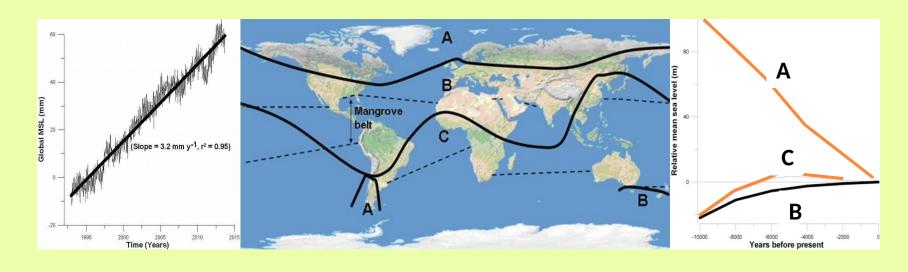

P1- downstream urban areas P2- downstream shrimp farms

Year	Waste waters	Shrimp farming	
2001	42.5	21.9	
2008	45.6	60.9	

Emission factors for Nitrogen, Phosphorus, Cooper, Zinc and Mercury from anthropogenic and natural sources, compared to shrimp farming.

	Sources	Emission factors N e P (t/km²/ano); Cu, Hg e Zn (kg/km²/ano)		Substances present in effluent		
	Natural sources	N = 0.05 - 0.9 P = 0.01 - 0.06	Cu = 2.0 - 2.6 Mostly associated with particulate matter $Hg = <0.001$		Receiving body	
	Agriculture	N = 0.05 - 2,65 P = 0.12 - 0.56	Cu = 0.7 - 13.5 Zn = 0.04 - 0.13 Hg = 0.02	Nitrate, Ammonia Phosphate	Cu ²⁺ , Zn ²⁺ , Part. Cu and Zn	Soil
•	Husbandry	N = 0.09 - 1.31 P = 0.09 - 1.73	Cu = 0.3 - 1.0 Zn = 0.4 - 7.3 Hg = < 0.001	Ammonia Phosphate	Part. Cu and Zn	Soil
	Urban waste waters and runoff	N = 0.03 - 0.55 P = 0.01 - 0.14	Cu = 0.1 - 15.3 Zn = 0.01 - 47.2 Hg = < 0.001	Nitrate, Ammonia Phosphate, P- particulate	Cu ²⁺ , Zn ²⁺ , Hg ²⁺ , Part. Cu and Zn	Soil, water ways and estuaries
	Urban solid wastes disposal	N = 0.001 - 0.2 P < 0.0001	Cu = 0,001 - 0,03 Zn = 0,001 - 0,07 Hg = 0.04	Forms of N and P unknown	Cu ²⁺ , Zn ²⁺ , Hg ²⁺ , Part. Cu and Zn	Soil
	Shrimp aquaculture*	N = 1.25 - 4.09, P = 0.13 - 0.32 Cu = 38.6 - 59.8, Hg = 0.03 - 0.04 Zn = 508		PON (70%); NO ₃ -, Ammonia, NO ₂ -, POP, Phosphate	Part. Cu, Zn and Hg	Water ways and estuaries

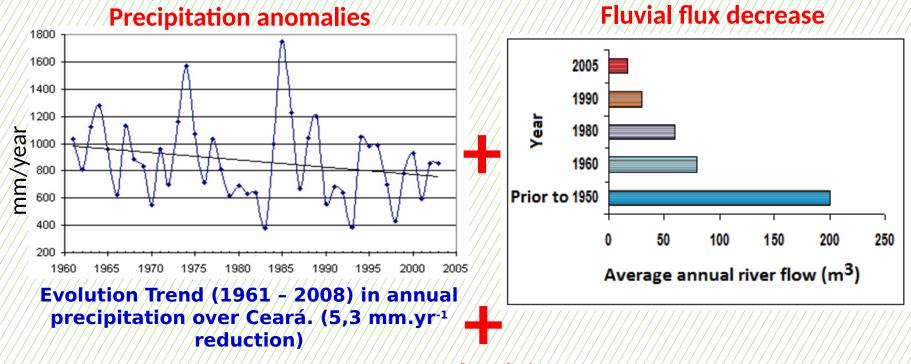

^{* (}Lacerda et al., 2006; 2008; 2011; León-Canhedo et al., 2017)

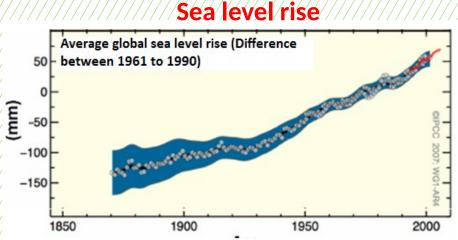

Pollutant concentration in mobile soil solution and/or tidal waters

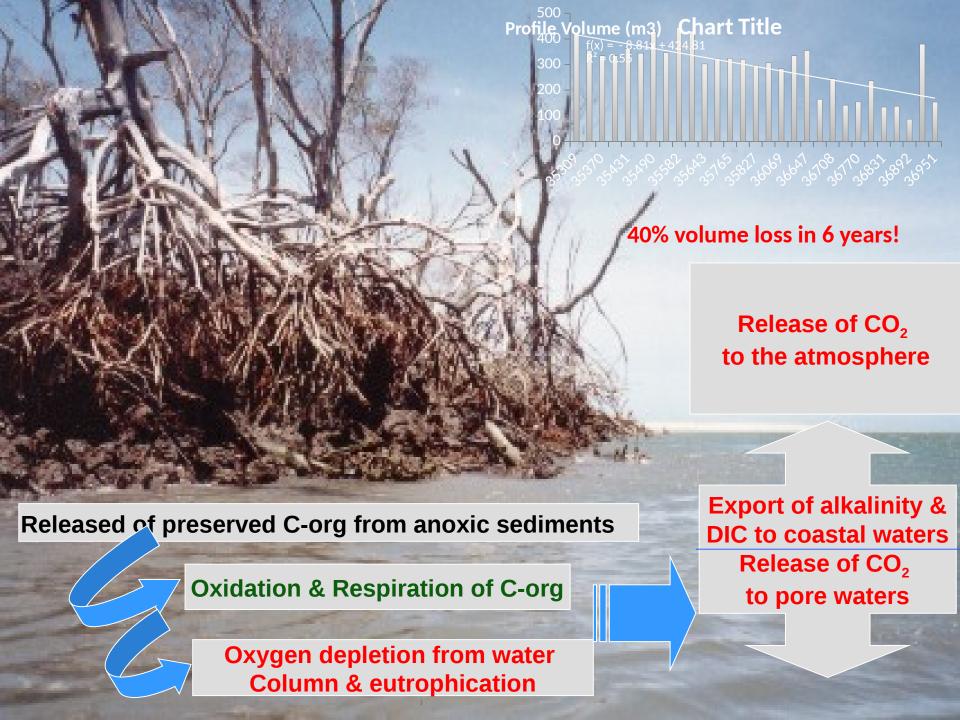
Modidified from Lacerda (2003)

Some technical people suggest mangroves as filters for aquaculture effluents, however, most mangroves are far from pristine. e.g. Phosphorus balance in two mangrove forests in NE Brazil, receiving effluents from shrimp aquaculture

Mangrove and sea level rise (adapted from Jennerjahn (2017)

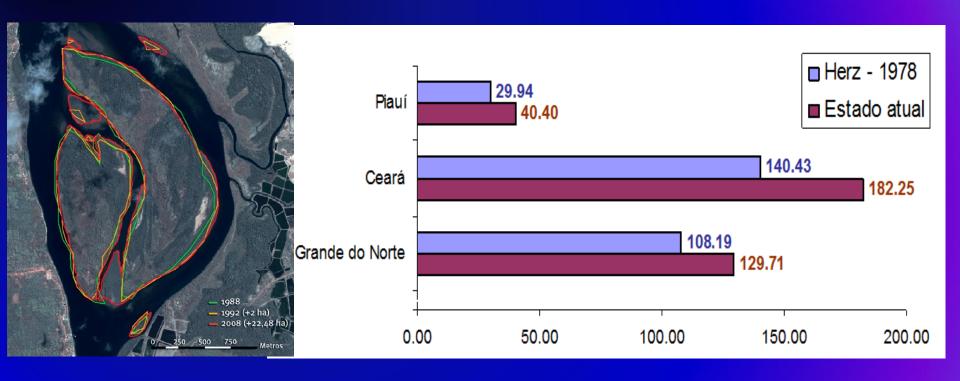


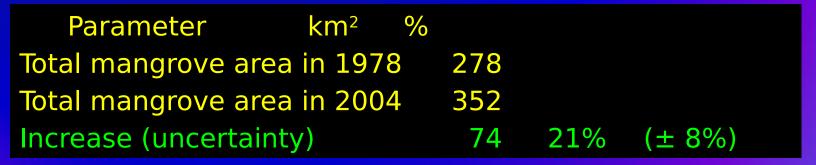


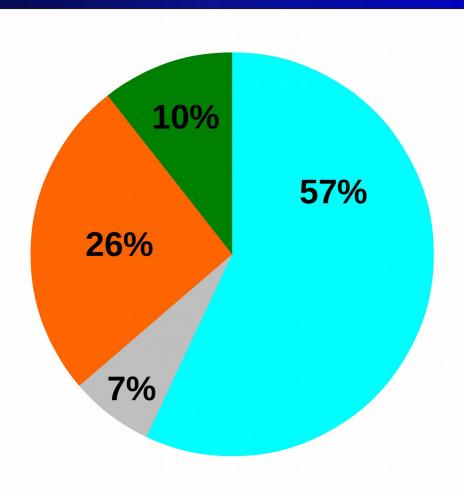

	RCP2.6 ΔT (°C)	RCP4.5 ΔT (°C)	RCP6.0 ΔT (°C)	RCP8.5 ΔT (°C)
Global	1.0±0.4	1.8±0.5	2.2±0.5	3.7±0.7
Land	1.2±0.6	2.4±0.6	3.0±0.7	4.8±0.9
Tropics	0.9±0.3	1.6±0.4	2.0±0.4	3.3±0.6
Ocean	0.8±0.4	1.5±0.4	1.9±0.4	3.1±0.6

Surface air temperature increase between the period 1986-2005 and the period 2081-2100 according to the four IPCC scenarios.

A positive feed back occurs between damming and climate change, particularly under dry climates.






Changes in mangrove extension in 27 estuaries along the semiarid coast of Brazil (Maia et al., 2006), Mangrove Atlas of NE Brazil.

www.insitutomilenioestuarios.com.br

Origins of alterations identified in 41 estuaries of the semiarid littoral of northeast Brazil. Comparing radar data from 1980 to Landsat, SPOT & Quickbird data from 1999 to 2013

Some conclusions and gaps

- Drivers of impacts on mangroves have changed drastically, this has reduced the effectiveness of some important societal responses towards conservation and sustainable management.
- It is clear that rehabilitation strategies and conservation and management legislation and practices of existing forests shall take into consideration not only local anthropogenic drivers but the climate change scenario. However...
- How global climate change interacts with local anthropogenic drivers?
- Does and how typology influences the impacts onto and the response of mangrove forests to climate change?
- How major anthropogenic drivers presently affecting mangroves may maximize or minimize impacts from climate change?

Acknowledgements

The International Tropical Timbre Organization provided full financial support for the author's participation. Special thanks are due to Dr. Hwan-ok Ma, for the help in organizing this participation.

The International Society for Mangrove Ecosystems, and in particular, Prof. Shigeyuki Baba for supporting my application to participate in the meeting and support for the many projects coordinated together within ISME's framework.

International Society for Mangrove Ecosystems

Sincere thanks to the Ministry of Environment and Forestry of Indonesia for hosting the conference and kindly welcome me to your beautiful country.