

Large scale project on genetic timber verification

Bernd Degen and Henri Bouda

Thünen-Institute of Forest Genetics, Germany

bernd.degen@thuenen.de / henri.bouda@thuenen.de

Content

Introduction

- General information
- Objectives
- Involved countries
- Partners
- Expected results

Project implementation

- Sampling
- Genetic reference data
- Time schedule
- Technology transfer: lab equipment and training

Recommendations

- Better communication between labs
- Center of competence of Thünen Institute as an example
- GTTN as an opportunity

Introduction – general information

Duration: 01/10/2014 – 31/12/2017

Donor: German Federal Ministry of Food and Agriculture (BEL)

Introduction - objectives

Creation of genetic reference data to assign country of origin for 7 African and 7 Latin-American tree species

Support genetic reference labs in Kumasi/Ghana and Iquitos/Peru

Training workshops in Africa and Latin-America

Hosting scientists for three months training courses

Complete existing genetic reference data

Introduction – involved countries

Mexico is not involved up to now!

Introduction – partners

Thünen Institute (Germany) => co-ordination, gene marker development, genetic screening, training

Nature + & ULB Brussels (Belgium) => providing existing samples, training

INRA (Bordeaux, French Guiana) => sampling, providing existing samples, SNP genotyping

CEH (UK) => providing existing samples, training

FORIG (Ghana) => reference lab Africa, sampling West Africa

```
G2S (Cameroon) => sampling Central Africa
```

```
IIAP (Peru) => reference lab Latin America, sampling Peru
```

```
EUROFINS (Germany) => Next Generation DNA Sequencing
```

Barbara Rocha, Alexandre Sebbenn (Brazil) => sampling, DNA extraction

```
Kathelyn Paredes (Bolivia) => sampling
```

University Adelaide (Australia) => Next Generation DNA Sequencing, SNP genotyping, training

Introduction – expected results

The genetic reference data to assign country of origin for at least 7 African and 7 Latin-American tree species is created

Equipment of genetic reference labs in Kumasi/Ghana and Iquitos/Peru is improved by additional new equipment

2 Training workshops respectively in Africa and Latin-America are organised with a total participants of 20 people minimum

9 scientists from targeted timber producers countries have been hosted in the skilled labs (University Libre de Belgique through Nature +/Belgium, NERC/UK and University of Adelaide/Australia)

The new created genetic reference data is integrated to the existing genetic reference data

7

Project implementation – <u>sampling</u>

8

Project implementation – sampling in Africa

Project implementation – sampling in South America

Project implementation – genetic reference data (process)

Project implementation – genetic reference data (to assign the country of origin)

Project implementation – genetic reference data (Distribution of the genetic clusters over the species)

(Entandrophragma sp., N=1279, 74 SNPs)

Таха	K1	K2	K3	K4	K5	K6	K7	K8	K 9
Entandrophragma angolense	0.00	0.02	0.03	0.01	0.01	0.01	0.01	0.77	0.14
Entandrophragma candollei	0.00	0.00	0.01	0.00	0.01	0.01	0.00	0.21	0.75
Entandrophragma cylindricum	0.02	0.05	0.17	0.07	0.20	0.09	0.12	0.19	0.11
Entandrophragma utile	0.00	0.06	0.05	0.01	0.01	0.04	0.01	0.12	0.70

Project implementation – <u>genetic reference data (Distribution of the genetic</u> <u>clusters over the species)</u>

Genetic differences among genetic clusters

ÜNEN

(Entandrophragma sp., N=1279, 74 SNPs)

(Entandrophragma so., N= 943, 74 SNPs)

Group Size Number of Tests Method of assignement Minimum number of bi-p	arental loci requested	= 1 = 943 = Bayesian Approach = 1	
Population	Sample Size	Tested ind/groups	% correct assigned
к1	11	11	100
К2	40	40	100
КЗ	153	153	100
к4	63	63	100
К5	167	167	100
кб	65	65	100
к7	74	74	100
к8	238	238	100
к9	132	132	100
Total			100

Project implementation – genetic reference data (Self Assignments tests)

Self-Assignment-Test															
Entandrophragma cylindricum (N=554 , SNPs=74)															
	Correct assigned (%)														
G=1 G=3 G=5															
Cameroon	63	83	97												
Congro Br	68	93	97												
DRC	77	93	100												
Gabon	25	33	57												
Ghana	100	100	100												
Mean	67	80	90												

Project implementation – <u>time schedule</u>

No	No Aktivität		2014	Ļ	2015												
NU.	AKUVIIAL	0	Ν	D	J	F	м	Α	М	J	J	Α	S	0	Ν	D	
1	Sampling high quality DNA (gene marker development)																
2	Sampling reference material																
3	Access to former collected samples																
4	Sampling wood material (blind test)																
5	Next Generation Sequencing (gene marker development)																
6	Genetic pre-screening (sequenom)																
7	Genetic screening reference material (sequenom)																
8	Simplification lab approach for "golden markers"																
9	Additional equipment and consumables for reference labs																
10	Training of persons from reference labss																
11	Training workshops in Africa & Latin America																
12	Project meetings																

Project implementation – <u>time schedule</u>

No				14 2015 2016											2017																							
NQ.	AKUVILIL	0	N	D	J	F	М	A	М	J	J	A	S	0	N	D	JF	: N	/ A	M	J	J	A	S	0	N C)	J	: N	1	A	V J	J	A	. ?	s C	N	D
1	Sampling high quality DNA (gene marker development)																																					
2	Sampling reference material																																					
3	Access to former collected samples																																					
4	Sampling wood material (blind test)																																					
5	Next Generation Sequencing (gene marker development)																																					
6	Genetic pre-screening (sequenom)																																					
7	Genetic screening reference material (sequenom)																																					
8	Simplification lab approach for "golden markers"																																					
9	Additional equipment and consumables for reference labs																																					
10	Training of persons from reference labss																																					
11	Training workshops in Africa & Latin America																																					
12	Project meetings																																					
10 11 12 ugu	Training of persons from reference labss Training workshops in Africa & Latin America Project meetings IST 2016 Strengthening forest c	or	ntr	ol	S	yst	te	m	s a	an	dı	ma	ark	ket	: cł	nai	ins	in	A	PE	Ce	eco	Dn	om	nie	es-	·Lī	ma	a		Bo		da	&)eg	e	n

Project implementation – technology transfer (labs equipment)

With previous similar project (ITTO project) the lab of Kumasi had already received basic lab equipment

Equipment received by Kumasi lab during the ITTO project in 2014

Project implementation – technology transfer (labs equipment)

For the current project, the reference genetic reference labs in Kumasi/Ghana and Iquitos/Peru have received an additional equipment.

New sequencer for the lab of FORIG in Kumasi August 2016 Strengthening forest control systems and market chains in APEC economies-Lima Bouda & De

Project implementation – <u>technology transfer (training)</u>

Type of training	Host institute	Number of participant s	Schedule
Basic knowledge on wood anatomy and DNA extraction	FORIG and IIAP	20	2016 and 2017
Intensive training on timber tracking based on DNA (4.5 months)	University Brussels	2	April to August 16
Intensive training on timber tracking based on DNA (3 months)	University Adelaide	3	2017
Intensive training on timber tracking based on DNA (3 months)	University Brussels	3	2017

Recommendations

Better communication between labs

More and more forest genetic labs are investing more resources and time on timber DNA. Improving the communication and collaboration will help:

- to avoid repetitive work
- to improve the techniques and methodologies
- to share data and improve the networking

Recommendations <u>Example of Thünen-Centre of Competence</u>

EU Timber-Regulation

Timber traders need to declare species and country of origin

Implementation into national law (HSiG)

BEL (Bundesanstalt für Ernährung und Landwirtschaft) = Responsible authority in Germany

Timber importers are registered in a BLE data base

10-20% of the market participants will be inspected by BEL

BEL takes samples for controls => send it to the Thünen-Centre of Competence

www.ti.bund.de/timber/

Recommendations <u>Example of Thünen-Centre of Competence</u>

THÜNEN

Thünen Centre of Competence on the Origin of Timber

Merged activities of the three Thünenspecialised-Institutes:

Institute of Wood Science Institute of Forest Genetics Institute of International Forestry and Forest Economy

- ✓ Species identification
- ✓ Control of geographic origin
- ✓ Analysis of timber trade
- ✓ Support on certification

Recommendations Example of Thünen-Centre of Competence

THÜNEN

Analysed wood samples at the genetic lab

2013 => 160 wood samples 2014 => 436 wood samples

oak, larch, merbau, mahogany, khaya

In 10%-20% of the cases doubts on the correctness of claims

Recommendations GTTN as an opportunity

Still under building process, the GTTN involves a lot of organisations partners, with an International & Multi-stakeholders Steering Committee

The goal of GTTN is to facilitate and to promote the <u>integrated use</u> of <u>DNA</u> <u>and stable isotope technologies</u> to fight illegal logging

More information on: <u>www.globaltimbertrackingnetwork.org</u>

Thank you for your attention! Gracias por su atencion!