Technologies and Economics of Energy Generation from Logging Residues and Wood Processing Waste

Prof. Dr. Arno Frühwald University of Hamburg and Federal Research Centre for Forestry and Forest Products Hamburg, Germany

ITTO

International Conference on Wood-Based Bioenergy Hannover, Germany 17 – 19 May 2007

- Vision for renewable energy in Europe
- Potential for wood-energy, example Germany
- Wood-energy in the timber industry
- Use of wood for energy in households
- Pellets: technology and economics
- Medium sized heat/heat + power plants: Technology and Economics
- Logging residues: harvesting and costs
- Ecological aspects
- Summary

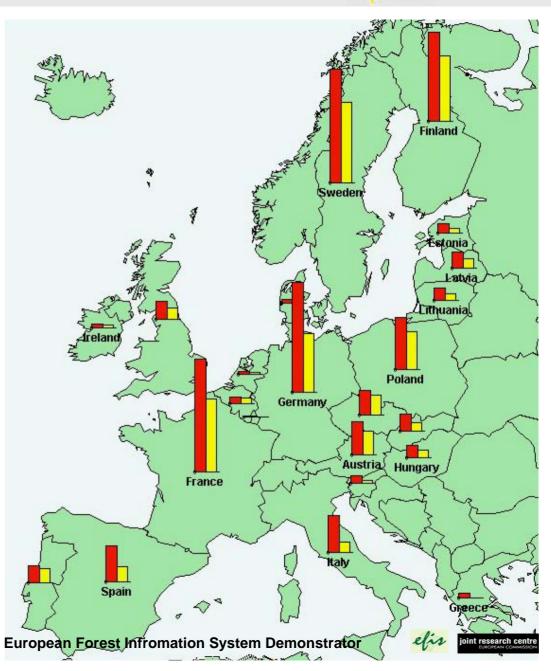
Selected countries in the EU: Electricity Generation from Biomass (all biomass: wood + agric. biomass) in GWh

S	Electricity Share of enewables %	Solar	Wind	Biomass	Hydro- energy
Austria	64	86	79	3452	3132
Denmark	27	9	566	2154	2
Finland	27	1	10	7556	1296
France	12	19	49	12007	5179
Germany	11	269	2173	9367	1812
Great Britair	ר 4	25	166	2863	424
Italy	14	19	159	3145	3671
Sweden	56	5	73	8883	5170
Spain	16	62	1341	4853	2713

European Union: Renewable Energy for Electricity Generation 2006 compared to 2020 (source: EC DG JRC, 2007)

in Terrawatt- hours (TWh)	2006	2020	increase per year	contribution to el-generation 2020
Wind	95	856	17 %	35 %
Biomass	55	209	10 %	9 %
Solar	2,5	150	34 %	6 %
Total	152,5	1250	15 %	
pred. consumption	3040,0	2432 (!)		
Share of renewables	5 %	50 %		

Example Europe



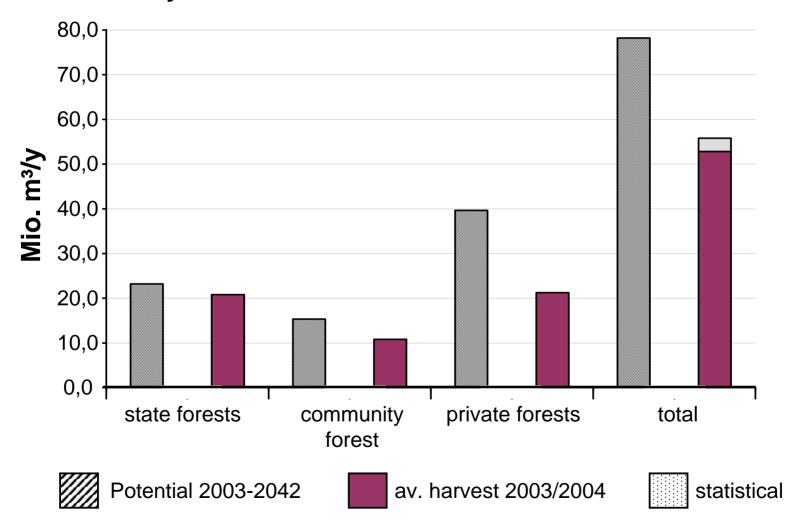
Net annnual increment > fellings

EU 15 (mill m³): 483 ⇔ 302

Additional 10 EU states (mill m³): 125 ⇔ 81

Source: UNECE/FAO, 2000; no data for Greece, Luxembourg and Malta)

Germany: Forest, Wood Utilization, Potentials



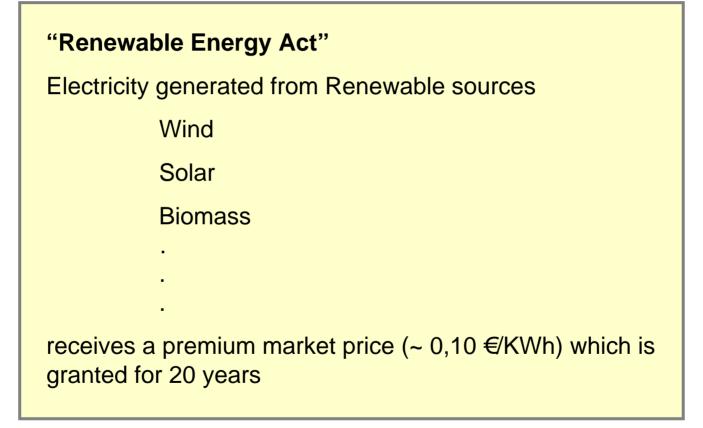
Forest area ~ 11 Mio ha (~ 30 % of land area) annual increment (long term) logs ~ 80 Mio m³ residues ~ 20 Mio m³ (solid volume) harvests and uses $(m^{3}/y)^{1}$ logs ~ 70 Mio m³ of which ~ 36 Mio m³ saw logs ~ 15 Mio m³ firewood (priv. households) ~ 8 Mio m³ wood bases panels ~ 6 Mio m³ pulp and paper ~ 5 Mio m^3 energy (incl. CHP) Potentials ~ 10 Mio m³ logs more $\sim 10 - 15$ Mio m³ forest residues (actually 3 - 5 Mio m³ used) Main problem: private forest owners! ¹⁾ Source: Mantau 2007

Potential and Harvest

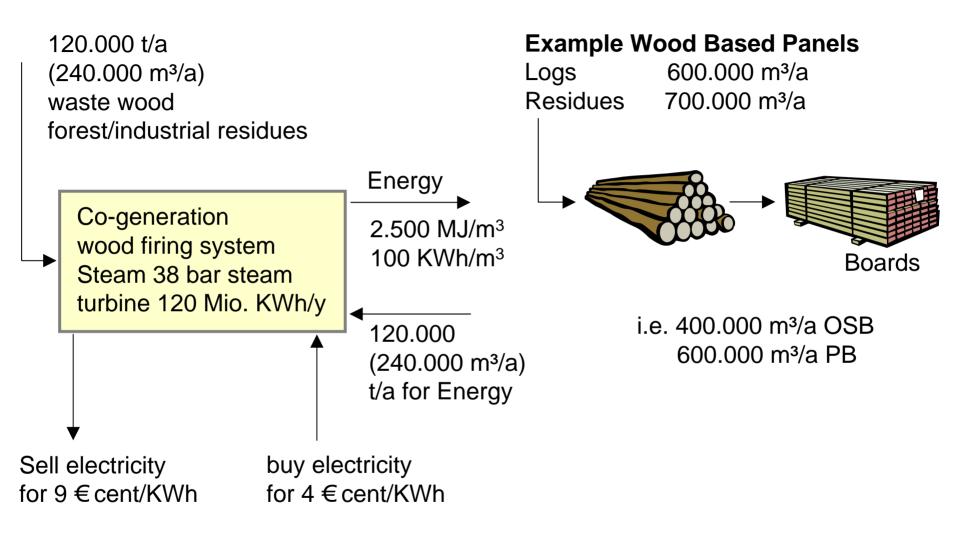
Germany

Wood prices in Germany in Euro/ton (dry)

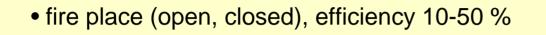
logs: softwood	80 - 120 +
hardwood	70 – 150 +
forest residues wet, chipped industrial residues	60 – 80
chips	70 – 90
sawdust	50 – 70
others	40 – 60
recycled wood	50 – 70 (less if contaminated)
pellets	160 – 220
oil equivalent	230 – 250


Germany: Wood Industry, Use of Wood-Energy

	% wo	od energy	y of total energy
		1994	2004
Sawmills	heat	75	80
	power	20	40
Plywood mills	heat power	86 10	90 20
Particle- and Fiberboard mills	heat power	75 5	90 40
Furniture mills	heat power	60 5	80 10



Germanys system to generate more "renewable electricity"


Energy Generation in the Timber Industry

turn over 120 Mio. KWh 0,09 € = 10.800.000 € → 12 €/m³ of board Invest 50 Mio. €, annual running costs 2 Mio. → total costs 6 Mio €/y

- simple oven (with heat storage) efficiency 50-70 %
- pellet heating-system (single/double family houses efficiency 80-90 %
- woodchip heating system (dry or wet chips)

multi-family houses (small installations)

living quarter (up to i.e. 500 houses)

or community buildings

Fuel costs for a single family house, Euro/year, 150 m2, built ~ 1980, oil consumption 3000 light fuel oil per year (heating and hot water)

	light fuel oil	natural gas	equivalent wood ¹⁾
1981 - 1985	1150	1250	750
1986 - 1990	700	1000	750
1991 - 1995	700	1000	750
1996 - 2000	800	1000	750
2001 - 2005	1300	1500	750
2006 - 2007	1800	2000	750 - 1000

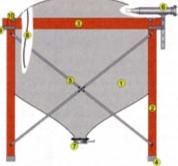
¹⁾ 1 I oil ~ 2,5 kg wood (dry matter), 100 \in dry ton, small quantities

Heat generation with wood pellets, 1,5 MW

- environmental friendly
- easy maintenance
- low investment

Pellets – one Way to Combat Fossil Fuel Prices

Sawdust or small particles — Pellets 6-10 mm diameter, density 0,8-1,0 g/cm³


Solar Heating System

Silo 10-15 m³ (5-8 t)

30% of required energy

Source: Paradigma

70% of required energy


energy demand heating + hot water 50 Kwh/m² 150 m² home \rightarrow 4,0 t Pellets/y (for new houses)

Single Family home 150 m ² liv	ing area	
Pellet firing system 15 kW		12.000 €
Pellet storage + transp. System		2.000 €
Hot water storage system 500 I		2.000 €
Solar panel system 5 m ²		5.000 €
others		2.000 €
	Investme	ents 23.000 €
costs per year:		
depreciation 20 years		1.150 € /y
maintenance		500 €⁄y
pellets 4 t/y		900 €⁄y
	total	2.550 € y
Alternative:		
gas-oil system 8.000 € Invest		160 €⁄y (no solar)
maintenance		300 €/y
oil/gas (3.000 l oil /y)		1.950 € /y
	total	2.410 € y

1 Euro = 1.35 US\$

CHP-Plant of medium size

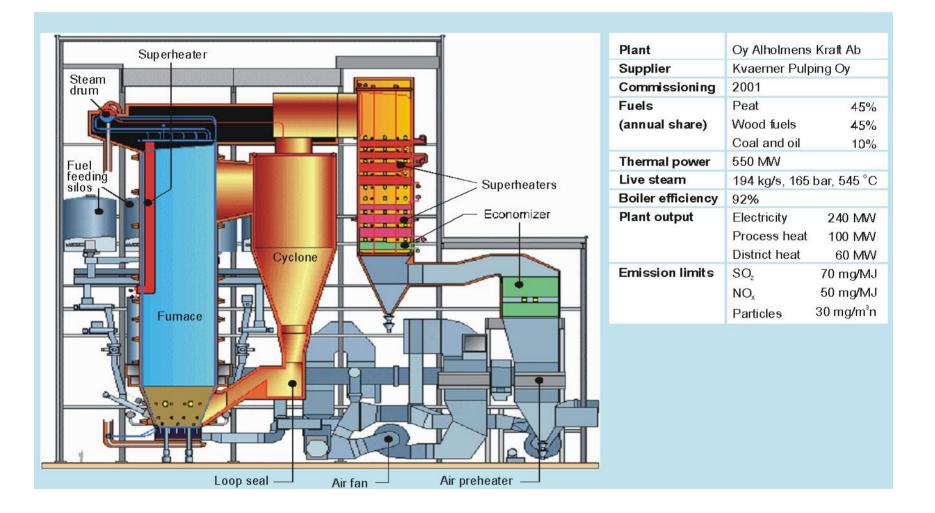
Forssan Energia Oy, Finland **Bubbling fluidizes bed boiler** 22.8 kg/s, 62 bar, 510°C 66 MW_{th} fuels: recycled wood, forest residues Forssan Energia Oy

With permission of Forssan Energia Oy and Foster Wheeler Energia Oy

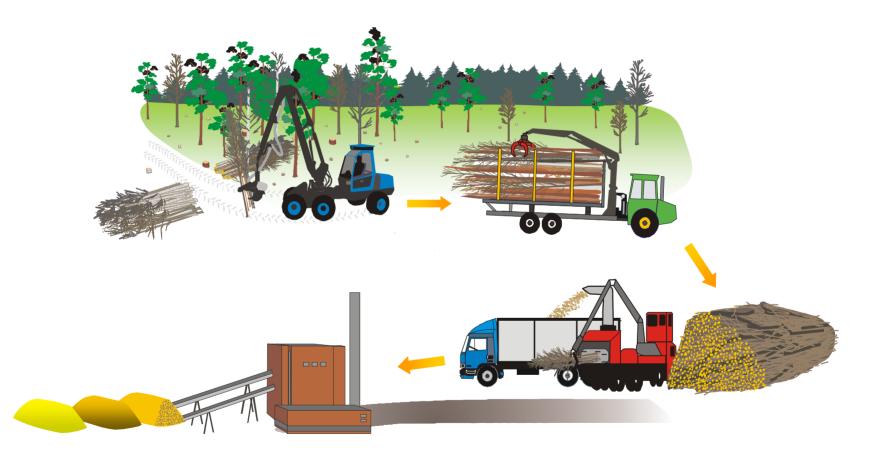
Lunds Energi AB wood fired district heating plant Lund/Lomma, Sweden

CHP-Plant 4,5MWth/1,1 MWel Investment 4.455.000 EURO (2006) fuel: green chips (non forest)				
Sales Revenues	€y			
Power 8000 h/y x 1,09 MWh = 8546 MWh x 119 €/MWh	= 1.016.000			
Heat 8000 h/y x 2,39 MWh = 19000 MWh x 4 €/MWh	= 76.000			
Total	= 1.092.000			
Cost Structure				
chips: 43.152 m ³ (vol) x 3 €/m ³	= 129.000	9 € m³		
electricity: 8000 h/y x 264 KW = 2112 MWh/y x 55 €/MWh	= 116.000			
ash: 532 t/y x 40 €/t	= 21.000			
personal: 1 person x 35.000 €/y	= 35.000			
maintainance: 1,3 % o f investments	= 58.000			
insurance:	= 8.000			
others:	= 30.000			
Source: Seeger Engineering 2007	= 390.000	648.000		

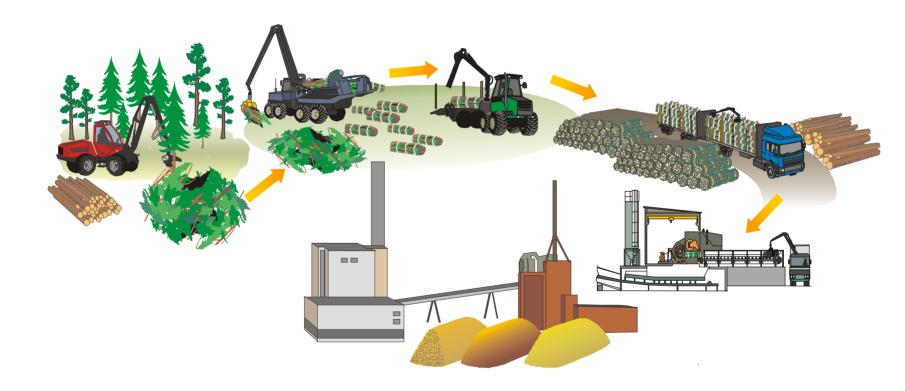
1 Euro = 1.35 US\$


Economic Aspects

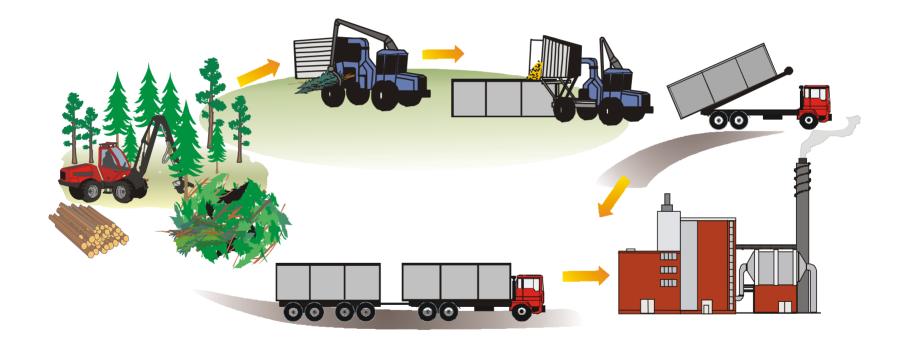
CHP-Plant 4,5MWth/1,1 MWel Investment 4.455.000 EURO (2006) fuel: green chips (non forest)					
Sales Direct Costs	1.092.000 390.000		648.000		
Gross Profit	702.000	→ 16 % of Investment pay back 6,7 years	10 % of Investment pay back 10 years		
Depreciation 8 %/12,5 years	376.000				
Net Profit	326.000	→ 7,3 % interest on capital			
Source: Seeger Engineering 2007					


The world largest biomass heated CHP-Plant (550 MWel)

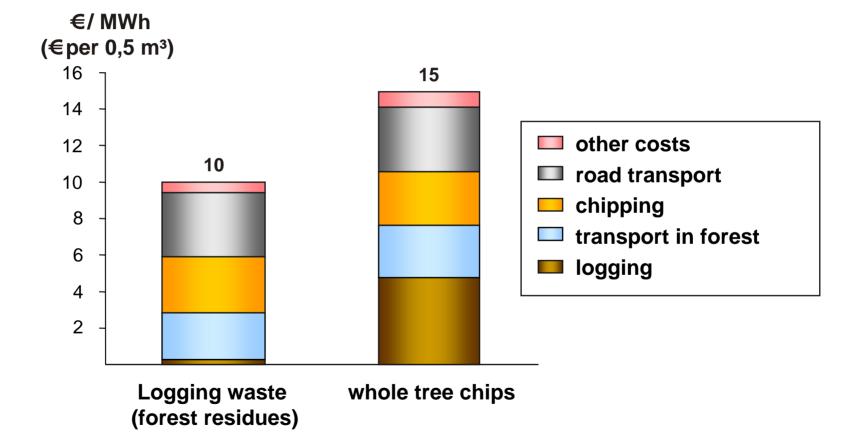
Whole tree chips for energy


Whole trees, chipping at landing, transport with truck to plant

Chipping at power plant

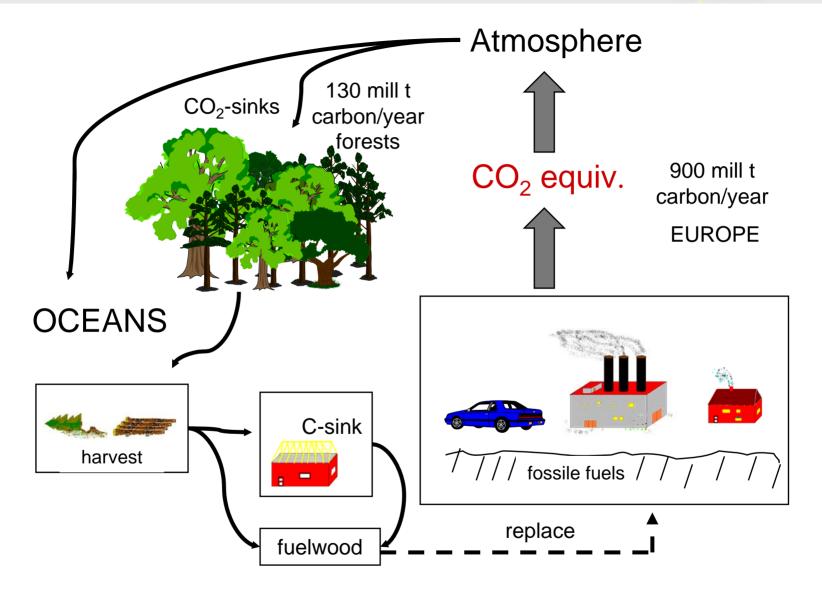

Logging residues, bundling at logging site, forwarder to street, transport with truck to plant

Chipping at logging sites



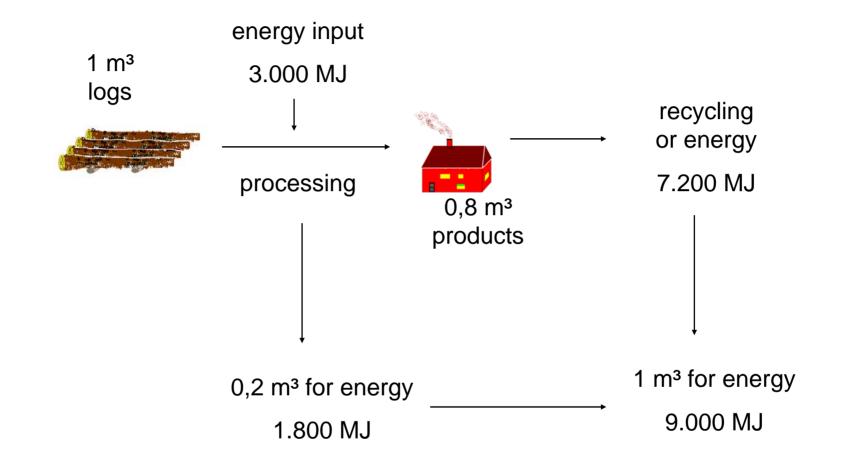
Logging residues, off road chipper, transport in separat containers

Cost structure for forest residues for energy

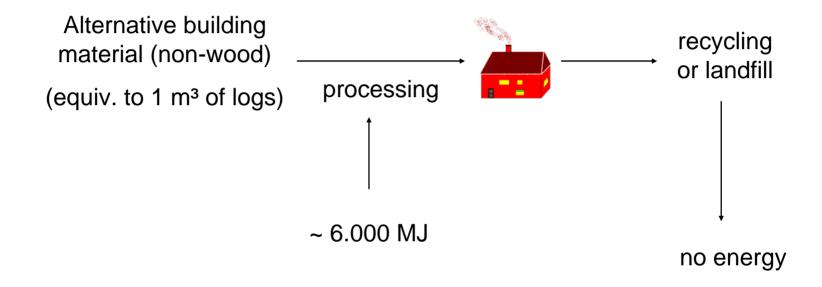


Source: VTT

1 Euro = 1.35 US\$


Closed carbon cycle

Energy aspects of wooden products



$\Delta = 6.000 \text{ MJ/m}^3 \text{ energy surplus}$

Energy aspects of non-wooden products

$\Delta = 6.000 \text{ MJ/m}^3$ energy consumption

a) from wood system 6.000 MJ/m³ logs surplus energy (to replace fossil energy) b) from non wood systems 6.000 MJ/m³ logs equivalent input (fossil energy) Wood system replaces 12.000 MJ/m³ logs fossil energy = equivalent to 1,10 t CO₂ or 0,30 t C emitted into atmosphere Compared to storage in the forest 1 m³ is equivalent to ~ 0,25 t C or 0,90 t CO₂ The consequences: Use more wood first to produce products second to produce energy

Summary

- More wood is available from traditional forestry in Europe as in many other countries – but: forest owners often not interested to sell wood
- 2. Higher wood removals cause higher costs and higher market prices
- 3. Wood-fuel prices are generally competitive
- Technologies for wood-energy generation exist in all capacities, from 3 KW up to 200 (500) MW
- 5. Small (20 KW) and mid-size installations are competitive to other (fossil!) fuels
- 6. Policy can establish measures to promote renewable energy (biomass)
- 7. Wood-energy is environ mentally friendly but competes with the use of wood for products

Thank you for listening

Tack för Uppmärksamheten

Merci beaucoup pour votre attention

Vi ringrazio per la cortese attenzione

Muchas gracias por su atención

Vielen Dank für Ihre Aufmerksamkeit