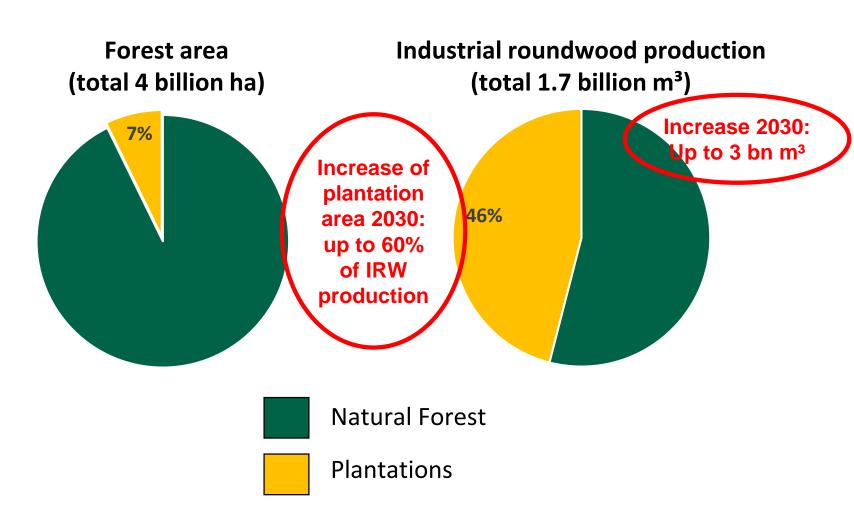


INVESTING IN TIMBER PRODUCTION -

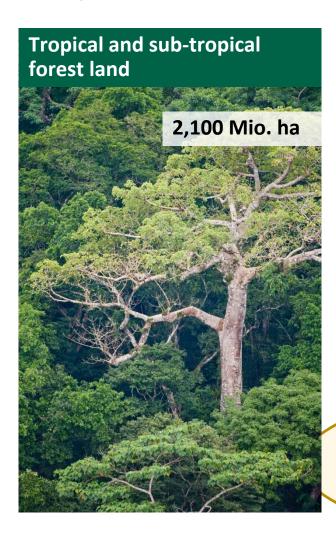
Lessons learnt from plantations, natural forests and silvopastoral systems


28.11.2017

Christian Held

ITTO's Annual Market Discussion 53rd session of the Tropical Timber Council 27 November – 2 December 2017, Lima, Peru

SOURCES OF INDUSTRIAL ROUNDWOOD


Forest area and production

Sources: FAO (2012/2015); Payn et al. (2015); d`Annunzio et el (2015)

NATURAL FORESTS

Today

Future

Conversion to agriculture, pasture, settlements, etc. 400 - 500 Mio. ha (???)

Conservation areas 200 Mio. ha (10% target)

Natural forest (primary, secondary, degraded) ~ 1,500 Mio. ha

PLANTATION VS NATURAL FOREST MANAGEMENT (I)

Plantations win the economic competition while SFM scores ecologically

	Natural forest management	Plantation forestry	Carbon Carbon	
Average carbon stock	400 tCO ₂ /ha	200 tCO ₂ /ha	BAV	Biodiv
Biodiversity	Highly diverse	Limited diversity		
Jobs	5 FTE/1,000 ha	23 FTE/1,000 ha	Jobs	
Biological asset value	660 USD/ha	4,500 USD/ha	forestry	

Sources: UNIQUE (2016): Sustainable natural forest management in the tropics. Best practices and investment opportunities for large-scale forestry; World Bank (2017): Harnessing the Potential of Productive Forests and Timber Supply Chains for Climate Change Mitigation and Green Growth (elaborated by UNIQUE and Climate Focus); Results from UNIQUE due diligence on planation investments in Africa and Latin America

PLANTATION VS NATURAL FOREST MANAGEMENT (II)

Supply target perspective equialize the socio-economic valuation for SFM

Impacts of producing 100,000 m³ industrial roundwood (sawlogs):

	Plantation	SFM tropics
MAI (m³/ha/a)	~30 (15 – 50)	~5 (2 – 10)
Area required (ha)	3,333	20,000
Employment (FTE)	77	100
Carbon sequestration (tCO2)	666,600	8 million
Biological asset value (USD)	14.9 million	13.2 million

5

PLANTATIONS VS SILVOPASTORAL SYSTEMS VS PASTURE

Silvopastural systems combine attractive return profile and socio-ecological benefits

A.A.A.A.A.

			Maranan maranan maranan	
	Plantation forestry	Silvopastoral systems	Traditional cattle breeding	
Stocking (head/ha)		0.6-0.9	1.0-1.5	
Density (trees/ha)	1,000 to 200	714 to 200		
MAI (m³/ha/yr)	35-40	30-35		
Weight gain (kg/ha/yr)		100-150	150-250	
Return on invest	13-16%	12-15%	6-10%	
Cash flow positive after	7 years	4 years	2-3 years	
Job generation per 1,000 ha	25-30	25-30	2-4	
Carbon balance (ha/yr)	-8 tCO ₂ -eq	-5 tCO ₂ -eq	+2 tCO ₂ -eq	

UNIQUE IN PARAGUAY

Sustainable timber production systems

	Natural forest	Silvopastoral system	Plantation
Area under management	5.600 ha	3.200 ha	2.600 ha
MAI	6 m³/ha/a	33 m³/ha/a	38 m³/ha/a
Production cost	42 USD/m³	17 USD/m³	16 USD/m³
Revenues on timber	58 USD/m³	42 USD/m³	42 USD/m³
Profit	95 USD/ha/a	850 USD/ha/a	950 USD/ha/a

Conclusions

- Sustainable supply with timber is long-term global challenge, which has to be addressed taking into account local conditions and assets (land/resources availability, with a view on natural forest resources and degraded areas, markets, policy framework).
- Economically viable timber production is possible in plantations (large scale and small scale) **and** other production systems, i.e. natural forest, silvopastoral systems (and agroforestry).
- Plantations are the most attractive production system economically and in terms of efficient land use, but require substantial investments compared to natural forests.
- Natural forest management, though challenging, offer a competitive package of economic, social and ecological returns.
- Silvopastoral systems are competitive for their resource efficiency, upsides for food production and economic performance.

Schnewlinstr. 10 79098 Freiburg, Germany Tel: +49 761 208534 – 0

unique@unique-landuse.de www.unique-landuse.de