TO. INT. CONF. BALI 18-21, April 201

Mangrove forests and conservation their services in the Coral Triangle Eco-region, Southeast S isi, Indonesia

Dr. Kangkuso Analuddin¹

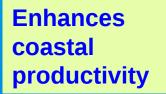
Dr. Jamili¹, Andi Septiana¹ M.Sc., Prof. Dr. Idin Sahidin², Prof. Dr. Usman Rianse³, Dr. Sahadev Sharma⁴⁸⁵ and Prof. Dr. Kazuo Nadaoka⁵

¹Department of Biology, Faculty of Sciences Halu Oleo University Kendari, Southeast Sulawesi, Indonesia ²Faculty of Pharmacy, Halu Oleo University Kendari, Southeast Sulawesi, Indonesia ³Department of Agricultural Bussines Faculty of Agriculture, Halu Oleo University, Kendari, Southeast Sulawesi, Indonesia ⁴Department of Mechanical and Environmental Informatics, Graduate School of Information Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan 5 Hawaii University, Hawaii, USA

INTRODUCTION

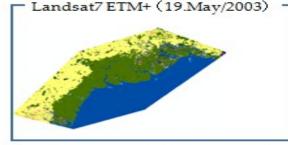
Mangroves are among the most important biodiversity in the coral triangle eco-region, and play very important role as "blue carbon and nutrients sources" in the coastal zones.

About 3 million hectares of mangrove forest grow along Indonesia's coastline. This is 23 percent of all mangrove ecosystems in the world (Giri et al., 2011).

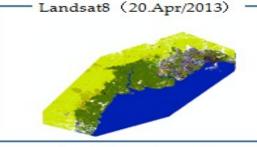

INTRODUCTION

Southeast Sulawesi is center of CTE, and mangrove forests cover about 74.384,82 Ha (BP DAS-Sampara, 2007)

Mangroves forests support the existence of several conservation sites : Rawa Aopa Watumohai National Park, Tiworo Archipelago, North Buton wildlife conservation area, and Wakatobi Marine Nasional Park



Provide several goods for local community life



1. Rapid degradation of mangroves forests (about 23.708,04 ha or 31.89%) due to land conversion for aquaculture (BP DAS-Sampara, 2007)

Land-use change (2003 - 2013)

Light green: Transparency: Yellow: Blue: Mangrove Fish pond Grass land Creek and ocean

	2003	2013 549.18 km ² 459.54 km ²	
Fish pond	258.75km ²		
Mangrove area	708.03km ²		

2. Sedimentation and pollution

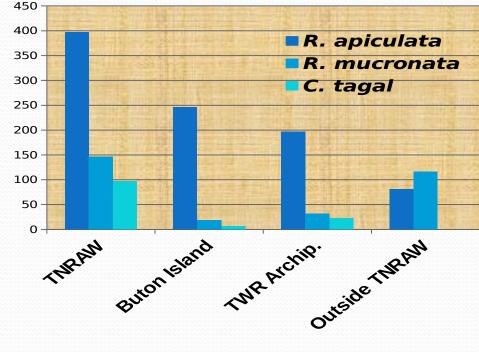
SOLUTION

1. Management of <u>ex</u>-ponds or unproductive ponds areas

2. Artificial revegetation on degraded mangroves areas

Young mangrove trees planted on Rodrigues Island as part of a large scale forestry programme in the late 1990 s to stabilise sediment movement and increase fish nursery areas.

Solution 3. Management of natural regenerated


Solution 4. Conservation of natural mangrove

Aboveground Biomass stocks SE:

R. apiculata stands (615.60 ton/ha) R. mucronata stands (452.25 ton/ha) R. stylosa stands (326.61 ton/ha) L. racemosa stands (109.77 ton/ha) C. tagal stands (162.61 ton/ha) (Analuddin et al. 2015; 2016)

> Blue carbon stocks (ton/ha), Analuddin et al. 2016

Solution 5: Conservation of mangroves services

Support local community life

 Habitat and food source for endemic ani mal of Anoa (Andi et. al. 2016, MAB)

REMARKATING AND A TH 2011

Support coastal productivity Annual litter production (ton ha-1 yr-1) 14.412 for *R. apiculata*, 13.161 for *R. mucronata*, 10.811 for *L. racemosa*, 13.678 for *C. tagal* and 12.62 for *R. stylosa* stands.

Bio filter of coastal pollutant: Mangrove have high capacity to accumulate heavy metals pollutant

Support various birds (33 species, Jamili et al. 2014)

Solution 6: INOVATION FOR NEW POTENTIAL USES OF MANGROVES

1. Bio-prospect of mangroves as antioxidant source in Southeast Sulawesi (Tannin, anthocyanin, alkaloids, Vitamin C, Andi et al. 2016, MAB Journal))

2. Green tea material from mangrove leaves SE

Mangroves	Cathechi n (%)	Simple Polyphenol (%)	Flavonoid (%)	Tea-flavin (%)	Reduction of Anthy- cholesterol (%)
Ceriops tagal		2.97			50,33
R. apiculata	0.81	4.81			
B. parviflora		10.27		0.6	53,67
B. gymnorrhiza		8.21	1.62		
R. stylosa		7.07	0.73		52,33
R. mucronata	1.14	6.41			42,33
Lumnitzera	1.71	6.81			
racemosa					33,33
Ceriops decandra	1.83	5.58	1.13		49,33

Mangroves might be high possibility as sources of antioxidant and green tea material of anthycholesterol (Andi Septiana and Analuddin, 2016)

INOVATION OF MANGROVES FRUITS AS NUTRITIONAL SOURCE

The six food produced from mangrove fruits-based, such as *pia apapi*, *dodol munto*, sweet *munto* stick, salty *munto* stick, *Soneratia* crackers and munto flour. These products were made from three mangrove species *Avicennia alba* (apapi), *Bruguiera gymnorrhiza* (Munto), and *Sonneratia alba* (**BADERAN**

et al. 2015)

Recommendation 1:

SAVE MANGROVES FOR FUTURE GENERATION

Recommendation 2. Management of mangroves for sustainable aquaculture system

Mangrove-hatchery shrimp farming system in Ca Mau province

Mud crab is stocked with shrimp in mangrove areas in Ca Mau province

Separated mangrove-shrimp farm

Recommendation 3. Development of mangroves as ecoturism sites Mangrove forests as ecoturisms activities :

Educational Research Recreation

Recommendation 4: Establishment of Local, National, Regional and International Collaborations

International research collaboration : Prof. Dr. Kazuo Nadaoka, Dr. Atsushi Watanabe, Dr. Takashi Nakamura Tokyo Inst. of Technology, Japan

International research collaboration : Dr. Reich McKenzie (US Forest Service) and Dr. Sahadev Sharma, Hawaii University, Hawaii, USA)

THANK YOU

Acknowledgments Ministry of Research, Technology and Higher education with grant nos. 0263/E5/2014 and 0100/E5.1/PE/2015, and 0299/E3/2016.

Halu Oleo University, Kendari , Indonesia Tokyo Institute of Technology, Japan US Forest service, USA Hawaii University, USA RAWN Park office, Kendari, Indonesia ITTO's support to joint the conference