

WOOD WASTE TO ENERGY- FROM WASTE TO WEALTH WITH SPECIAL REFERENCE TO MALAYSIA

by HOI WHY KONG

FORESTRY RESIDUES

- 1. Logging Residues
- 2. Primary Manufacturing Residues
- 3. Plywood Residues

Total

4. Secondary Residues

5.10 mil m3 2.2 mil m3 0.91 mil m3 0.90 mil m3

9.83 mil m3

Forestry Residues

Forestry Residues

Secondary Residues

Mill Residues

PROPERTIES

Physical

- Moisture Content
- Absolute density
- Bulk density

7.9% 669.5 kg/m3 294.0 kg/m3

<u>Chemical</u>

- Volatile matter
- Ash content
- Fixed carbon

80.2% 1.3% 18.6%

COMPARITIVE COST

Source	CV (MJ)	Cost (RM/MJ)
Diesel	10600	0.45
Charcoal	7300	0.22
Wood	3000	0.09
Coal	7000	0.22

PROBLEM STATEMENTS

- Waste handling and disposal problem
- Environmental problem carbon sequestration
- Volume increased multi-fold

National Energy Policy Objectives

Supply Objectives
 To provide adequate and secure energy supply

Utilisation Objectives
 To promote and encourage efficient utilsation

Environmental Objectives
 To ensure the minimum impacts on environment

New Energy Policy – 5th Fuel Policy

To supplement the conventional supply of energy, new sources such as renewable energy will be encouraged. In this regard, the fuel diversification policy which comprises of oil, gas, hydro and coal will be extende3d to include renewable energy as the fifth fuel, particularly biomass, biogas, municipal waste, solar and mini hydro. Of these, biomass resources such as oil palm and wood wastes as well as rice husk will be used on a wider basis mainly for electricity generation. Other potential source of energy will include palm diesel and hydrogen fuel

BIOMASS ENERGY TECHNOLOGY

Solid Fuel Combustor System

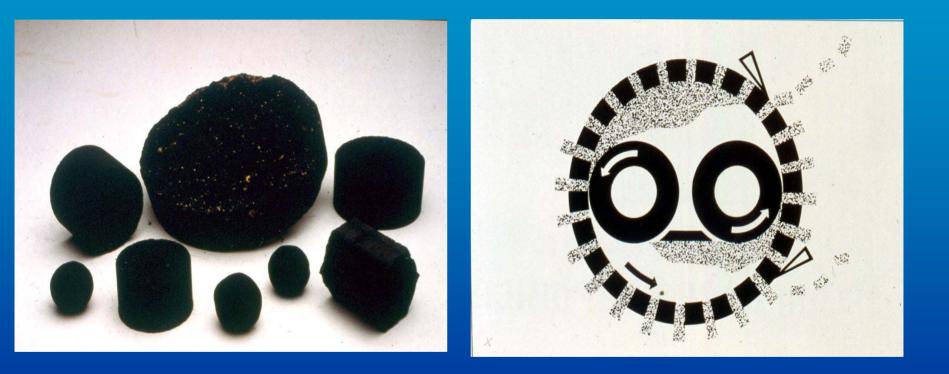
PRESENT-USES

FUEL WOOD

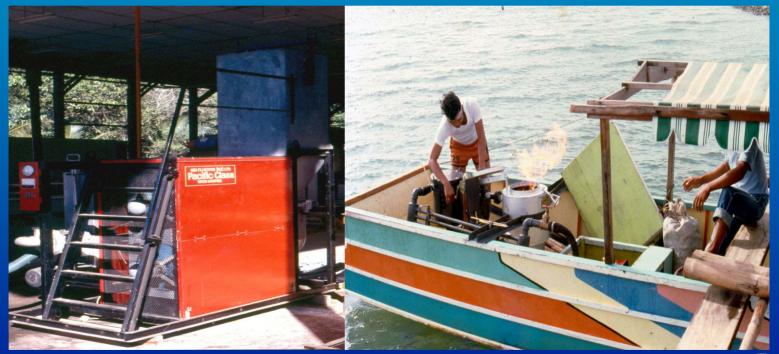
PRESENT USES

BRICK AND CHARCOAL INDUSTRY

ROTARY PYROLYSIS COMBUSTOR


1. Rice Husk Power Plant

WOOD BRIQUETTING


PRODUCTS "YIELD (Kg)

CHARCOAL ACIDS TARS SPIRITS GASES

GASIFICATION

Wood and Charcoal Gasification System

WOOD GASIFICATION

GASIFER

DIESEL

MALAYSIA

ACC	1678	" 1808
FUEL COST		
-DIESEL	7795	25133
-WOOD	4940	-
LABOUR	3600	1800
MAINTENANCE	1050	525
LUBRICANTS	1260	840
TOTAL COST/Y	20324	30106
ENERGY COST	0.242	0.358
	the second of the second of	

CURRENT SCENARIO

 Currently power generation system in P Malaysia consists of mainly non-RE resources i.e.
 – natural gas, coal, fuel oil and diesel.

This scene is expected to change due to: – effort to encourage and promote utilisation of energy from alternative sources from RE resources

CURRENT SCENARIO

 several initiatives and incentives were launched in the 2002 Budget; tax exemption, tax allowance and exemption of import duty and sales tax on imported machinery and equipment

 Create a new window of opportunity for smallscale RE power producers (SREP) in electricity generation

CURRENT SCENARIO

Number of RE power plants are expected to increase in the near future as promotion to accelerate development and use of RE in electricity generation is gaining pace

 Contribution from RE sources is targeted to reach 5% of total energy generated by the year 2005 under 8th and 9th Malaysia Plan
 – about 600MW of power capacity.

Assuming this capacity (600 MW) from RE is fully utilized, an equal amount of generation capacity from existing resources would be displaced or 'avoided' from conventional generation.

 Analysis is critical in decision of how RE resources are developed and utilized for electricity generation in P Malaysia leading to a policy on

pricing of electricity generation from RE
 Investment subsidies for RE generators

Type of residues	% of wood residues	Residues utilized (mil tonnes)	Generation capacity (MW)
Rubber Wood	50% of logging residues & 10% of processing residues	2.02	1,380
Forest Wood	18% of residues from forest wood industry	0.33	225

COGEN PLANT-AN

EXAMPLE

Turbine	2 x 650 kW
Configuration	
Boiler Capacity	6.5 MW (steam)
Boiler	75 %
Efficiency	
Fuel Input Rate	3.1 cubic meter per hour
(residues)	
Plant	7200 hrs per year
Availability	
Estimated	RM 7.5 million
Project Cost	

ECONOMIC/FINANCIAL

General Parameters and Assumptions

Installed Capacity Firm Capacity Commercial Operation Date Fuel Total efficiency Capacity factor Investment cost Fuel cost

Electricity sales tariff

: 6 MW
: 5.2 MW
: 2004
: 77% EFB & 23% shells
: 20.1%
: 90.4%
: RM 31.4 million
: RM15/tonne (current terms for 20 years)
: 16.7 sen/kWh (current terms for 20 years)

FINANCIAL RESULTS

Doromotor		Project Cost		
Parameter Unit		RM 31 million	RM 27 million	
FIRR	%	6.7	9.1	
Payback	years	8	7	

ECONOMIC RESULTS

Parameter	Unit	Project Cost	
Farameter	Onic		
		RM 31million	RM 27
EIRR	%	14.7	mi H ien
Econ. surplus	RM million	10.6	15
FOREX surplus	RM million	23.2	25.5

ENVIRONMENT_RESULTS

Emissions	Unit	Value
CO ₂	tonnes/year	- 41,764
SO ₂	tonnes/year	- 42
NO _x	tonnes/year	562

CONCLUSION

Implementation of RE power plant reduce 13,890 tonnes of coal consumption a year or fuel savings of RM 2.4 million for Malaysia
 Identified constraints:-

- Logistic problem
- Insecure and uncertain supply
- Competition from other uses
- Awareness
- Lack of database, regular information on biomass energy

FUTURE A CTIONS

Estimate the net availability of residues for electricity generation

Study on the technologies for conversion of wood residues to energy

Include additional case studies for analysis on economic and financial viability of RE power plants

FUTURE A CTIONS

R&D to produce economically feasible extraction technology

Encourage the key players to adopt Integrated System

Create a price-effective market for wood waste sustainable market demand

